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The Nonsymmetric Kaluza-Klein (Jordan-Thiry)
Theory in the Electromagnetic Case
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We present the nonsymmetric Kaluza-Klein and Jordan-Thiry theories as
interesting propositions of physics in higher dimensions. We consider the five-
dimensional (electromagnetic) case. The work is devoted to a five-dimensional
unification of the NGT (nonsymmetric theory of gravitation), electromagnetism,
and scalar forces in a Jordan-Thiry manner. We find “interference effects”
between gravitational and electromagnetic fields which appear to be due to the
skew-symmetric part of the metric. Our unification, called the nonsymmetric
Jordan-Thiry theory, becomes the classical Jordan-Thiry theory if the skew-
symmetric part of the metric is zero. It becomes the classical Kaluza~Klein theory
if the scalar field p=1 (Kaluza’s Ansatz). We also deal with material sources in
the nonsymmetric Kaluza-Klein theory for the electromagnetic case. We consider
phenomenological sources with a nonzero fermion current, a nonzero electric
current, and a nonzero spin density tensor. From the Palatini variational principle
we find equations for the gravitational and electromagnetic fields. We also con-
sider the geodetic equations in the theory and the equation of motion for charged
test particles. We consider some numerical predictions of the nonsymmetric
Kaluza-Klein theory with nonzero (and with zero) material sources. We prove
that they do not contradict any experimental data for the solar system and on
the surface of a neutron star. We deal also with spin sources in the nonsymmetric
Kaluza-Klein theory. We find an exact, static, spherically symmetric solution in
the nonsymmetric Kaluza-Klein theory in the electromagnetic case. This solution
has the remarkable property of describing “mass without mass” and “charge
without charge.” We examine its properties and a physical interpretation. We
consider a linear version of the theory, finding the electromagnetic Lagrangian
up to the second order of approximation with respect to A, =gu,—n,.. We
prove that in the zeroth and first orders of approximation there is no skewon-
photon interaction. We deal also with the Lagrangian for the scalar field (con-
nected to the “gravitational constant”). We prove that in the zeroth and first
orders of approximation the Lagrangian vanishes.

INTRODUCTION

The aim of this paper is to construct the Kaluza-Klein (Jordan-Thiry)
analogue of Einstein’s geometry on the electromagnetic bundle. In other
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words, it will be a five-dimensional unification of the NGT (nonsymmetric
theory of gravitation), classical Maxwell electromagnetism, and scalar forces
connected to the gravitational constant (as in scalar-tensor theories of gravi-
tation). Our unification uses a nonsymmetric metrization of fiber bundles.

The electromagnetic bundle means a principal fiber bundle over a space-
time F with a structural group U(1). The connection defined on this bundle
is called an electromagnetic connection.

Roughly speaking, in general relativity, mass curves space-time. In
NGT, mass and fermion charge (fermion number) curve and twist space-
time. In the classical Kaluza-Klein theory, mass curves space-time and
electric charge curves the fifth dimension. In the nonsymmetric Kaluza-
Klein theory, mass and fermion number curves and twist space-time, and
electric charge curves and twists the fifth dimension.

NGT is based on three fundamental geometrical quantities: two connec-
tions T, and W, and the nonsymmetric metric g, 5. This nonsymmetric
metric is equivalent to the existence of two geometrical objects defined on
space-time: the symmetric metric tensor

E=2.p0°®0°
and the two-form
g=g[uv}0~” N

In the general theory of relativity, we have only one connection with vanish-
ing torsion and a symmetric metric on space-time. Thus, we have only I’
and 8. Of course, in NGT, connections I' and I are interrelated and have
nonvanishing torsion.

The classical Kaluza-Klein approach was based on the following
ideas.(??

On space-time we have Riemannian geometry based on the metric
tensor g, and we have general relativity with the local coordinate invariance
principle. Simultaneously we have a principal fiber bundle over space-time
with the structural group U(1). The connection on this bundle describes the
electromagnetic field. We have also the local gauge invariance principle for
an electromagnetic field.

The local coordinate invariance principle and the local gauge invariance
principle seem to be two important principles of invariance. The Kaluza-
Klein theory unifies these two concepts and reduces them to the first, the
local coordinate invariance principle, but in a five-dimensional world.

The basic idea is very simple. On the gauge group U(1) we have a bi-
invariant symmetric tensor. The tensor plays the role of a metric in the Lie

*In this paper, references are cited as superscript numerals in parentheses.
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algebra of the gauge group U(1) which is simply R (real numbers). We can
choose as this tensor the number (—1).

On the electromagnetic bundle we have the natural distribution of hori-
zontal spaces induced by the connection.

The metric tensor g acts on space-time.

We can divide every tangent vector to the electromagnetic bundle in
only one way (the connection is established) into two parts: horizontal and
vertical. The horizontal part we can project onto space-time and the vertical
one, due to the connection, onto the Lie algebra of the gauge group (i.e.,
onto R). Thus, we have (symmetric) metrization of the fiber bundle. We can
“measure” independently the length of both parts by two (symmetric) metric
tensors and after this add these two results. Having the principal fiber bundie
metrized in this way, we introduce a linear connection on the bundle which
is compatible in some sense with the metric. The simplest solution is to
suppose that this connection is the Levi-Civita connection. This was done
in the five-dimensional Kaluza-Klein theory"? If we calculate the Ricci
curvature scalar for this connection, we get the sum of the Ricci curvature
scalar on space-time and the electromagnetic Lagrangian.

Introducing the scalar field in a Jordan-Thiry manner, we get a Lag-
rangian for a scalar field. However, this term can be removed as a four-
divergence from the Lagrangian density. This, means it does not propagate
in the five-dimensional Riemannian case. Thus, the five-dimensional Jordan-
Thiry (Kaluza-Klein) theory does not offer any “interference effects”
between gravity and electromagnetism. This forces us to abandon the
Riemannian geometry defined on the electromagnetic bundle and to use a
different connection. In our case it is a five-dimensional generalization of
the geometry from Einstein’s unified field theory®® (in the Kaufman
version®”) defined on the electromagnetic bundle. This geometry is bi-
invariant with respect to the action of the group U(1). It defines the Einstein-
Kaufman U(1) structure.

This theory, the nonsymmetric Kaluza-Klein theory, unifies the coor-
dinate invariance principle from NGT and the local gauge invariance prin-
ciple from electrodynamics.

Following the ideas concerning the geometry of the Kaluza-Klein
theory described above, it is necessary to find the nonsymmetric metrization
of the electromagnetic bundle over space-time. The existence of a non-
symmetric metric on the fiber bundle is equivalent to the existence of two
geometrical objects: 7 and y. The first, 7, is a symmetric bi-invariant tensor
that is the same as in the classical Kaluza-Klein (Jordan-Thiry) theory, and
the second, 7, is a 2-form on the fiber bundle. (For classical results see Refs.
7-61.) )

Following the basic idea of the previous construction, it is necessary to
choose a 2-form on the gauge group U(1). This form is zero on U(1), because



614 Kalinowski

every 2-form on U(1) is zero. This means that in the electromagnetic case
y=n*(g), where n* is the pullback of z (the natural projection on the
electromagnetic bundle). We can also introduce the scalar field in the
Jordan-Thiry manner.

In this new version of the Jordan-Thiry theory we get the following
new results. We get “interference effects” between electromagnetic and gravi-
tational fields, " je.:

1. A pew term in the electromagnetic Lagrangian
1
4n
2. The existence of an electromagnetic polarization of the vacuum M,z
with the interpretation as a torsion in the fifth dimension.

3. An additional term for the Lorentz force term in the equation of
motion for a test particle

( j1_>g[ya1 H,
My

(g“'F,,)’

where ¢ is the charge of the test particle and my its rest mass.

4. A new energy-momentum tensor 7,y for an electromagnetic field
with zero trace.

5. The source for the electromagnetic field—the conserved current j,.

All of these effects vanish if the metric of space-time becomes symmetric.
We get in the Moffat-Ricci curvature scalar on a five-dimensional mani-
fold P the Lagrangian of the scalar field ‘P,

gscal = g[vu]gévg(aa)\lj,u\yﬂ

and this field is connected to the effective gravitational constant by K=¢~
(K is the gravitational “constant”). The trace of the energy-momentum
tensor for this field is not zero. This suggests that ¥ is massive and has
Yukawa-type behavior. This indicates that ¥ has short range and the theory
does not violate the equivalence principle. Furthermore, the gravitational
“constant” K does not change at long distances. This statement also supports
the masslike term in the equation for W

~24n e P o

v

where
Pon = [2AgHIF, Y~ HOF,
em [ (g uv) au]
87

is the Lagrangian for the electromagnetic field in our theory.
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We also get a scalar-force term in the equation of motion for a charged
test particle moving in the gravitational and electromagnetic fields:

\2
__1_ (-q_) gﬂlﬁ) e”‘l",ﬁ
4 my

This force is of short range if ¥ is of short range. In our theory all of
these additional effects (in comparison to the classical Kaluza-Klein theory)
vanish if the metric of space-time becomes symmetric. First of all, ¥ does
not propagate. It is easy to see that

gsca] =0
for

g =0

and because of this, the additional term in the equation of motion for a test
particle also vanishes. It is of course important to find significant physical
consequences of the “interference effects” present in the nonsymmetric
Kaluza-Klein (Jordan-Thiry) theory. The best way to achieve this is to find
an exact solution of the full field equations. We find an exact solution of the
field equations in the static, spherically symmetric case in the form suggested
in Section 6 of ref. 18. Even in this, the simplest, case we get the following
interesting results®**":

[. The electric field is nonsingular at r=0 and has Coulomb-like
behavior for large r. This is similar to the situation in Born-Infeld
electrodynamics.®” Thus, there is a maximal value of the electric
field.

2. Asymptotically (for large r) the full solution behaves like the charged
Reissner-Nordstrom type solution in NGT.

3. The Newtonian mass (mass seen at infinity) equals the total energy
of the solution and is constructed from an electric charge @ and
from a fermion charge /.

4. The energy distribution is not singular everywhere. This means that
the solution describes a bounded system of electromagnetic and
gravitational fields.

5. There is no singularity at +=0 in the function a=g,;; that is,
gu(r=0)=1

6. The only singularities at r=0 are in @ =g;4=/"/r* and in a factor
(1+7*/r%) in the function y =g,,. There is also the usual singularity
in the determinant of the full nonsymmetric tensor /—g=7"sin
atr=0.
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7. The charge distribution is nonsingular.

8. For sufficiently large charge Q there exist one or two event horizons,
just as in the Reissner-Noérdstrom solution to the Einstein-Maxwell
equations. Sufficiently large charge in the present case means
sufficiently large Newtonian mass as well.

This solution is interesting as a classical model of a charged particle
constructed from gravitational and electromagnetic fields. If we suppose that
the Newtonian mass of our solutions is the mass of an electron, we get a
relationship between the classical radius of an electron and the parameter /
from NGT. The most fascinating aspect of our solution is that it describes
“mass without mass” and “charge without charge” in the following sense.
At the origin, r=0 (or anywhere) there are no Coulomb-like or Newton-
like first- and second-order poles with charge and mass as residues. This is
true for the metric and for the electric field.

Let us make some remarks on differences between the nonsymmetric
Kaluza-Klein and Jordan-Thiry theories. In the nonsymmetric Kaluza-
Klein theory there is an Ansatz p=1 [yss(x) = —1]. This condition seems to
be quite arbitrary and because of this we consider a more general case called
Jordan-Thiry theory where yss(x)=—p>(x) is a dynamical field.

Moreover, the detailed examination of the geodetic equations (for a
curve I') in both cases reveals the following. If p=const, the geodetic equa-
tions possess an integral of motion

dx® dx"”
gap — —L;=const ()

dr

or y(hor(u(t)), hor(u(1))) =const on I < P, which allows us to maintain an
initial normalization of the four-velocity for a test particle. Horizontally is
understood in the sense of the electromagnetic connection. In the case with
yss{x)#const (i.e., p#1) this is not possible in general. We discuss this
problem in Sections 9, 12, and 17. For this the condition yss(x)=const
does not seem to be an Ansatz in the theory but rather a conclusion from
equation (x).

This paper is organized as follows. In Section 1 we give some elements
of the geometry. The second section describes the nonsymmetric tensor on
a Lie group. The third gives a formulation of the nonsymmetric metrization
of the principal bundle. In Section 4 we formulate the nonsymmetric Jordan-
Thiry theory. We calculate connections @”z and Wz on the five-dimen-
sional manifold which are analogous to connections & “; and W%, from
NGT and Einstein-Kaufman theory. In Section 5 we write the geodetic



Nonsymmetric Kaluza-Klein Theory in EM Case 617

equation on P (nonsymmetrically metrized electromagnetic bundle) and we
find a new correction to the Lorentz force term. Section 6 is devoted to the
calculation of the 2-forms of torsion and the curvature for the connection
5. After this we write the curvature tensor for @'z and its contractions.
Using the obtained results, we calculate the Moffat-Ricci tensor and the
Moffat-Ricci curvature scalar for the connection W 5. In Section 7 we deal
with conformal transformation of g,, and a scalar field. In Section 8 we
define the Palatini variational principle for the Moffat-Ricci curvature scalar
R(W). We get field equations for gravitational and electromagnetic fields.
We discuss and interpret our results and point out all differences between
the classical and the nonsymmetric Jordan-Thiry (Kaluza-Klein) theories.
We write down all “interference effects” between gravitational and electro-
magnetic fields which appear in our theory. In Section 9 we deal in detail
with an equation of motion for a test particle. In Section 10 we introduce
material external sources into the nonsymmetric Kaluza-Klein theory.
Section 11 is devoted to the spin sources in our theory. In Section 12 we
examine geodetic equations in the case of nonzero external sources. Section
13 is devoted to numerical predictions of the theory. In Section 14 we deal
with spin sources in the weak-field approximation. Section 15 is devoted to
the linearization procedure in the nonsymmetric Jordan-Thiry (Kaluza-
Klein) theory. In Section 16 we consider the equation of motion for a test
particle in the linear approximation. Section 17 is devoted to the geodetic
equafions in the general case (p # const) and to geodetic deviation equations.
In Sections 18-22 we consider a stationary, spherically symmetric field in
the nonsymmetric Kaluza-Klein theory. We find the exact solution of the
field equation and examine its properties. In the Appendix we give some
additional details of our calculations.

1. ELEMENTS OF GEOMETRY

In this section we introduce notations and define the geometric quanti-
ties used in the paper. We use a smooth principal fiber bundle P, which
includes in its definition the following list of differentiable manifolds and
smooth maps: '

A total (bundle) space P.

A base space E; in our case it is a space-time.

A projection 7: P —> E.

A map ®: Px G — P defining the action of G on P; if a,beG and
£€G is the unit element, then ®(a) - B(b) = D(ba), O(g)=id, and P(a)p=
O(p, a)= R,p=pa; moreover, 7 - P(a)=r. Here o is a |-form of a connec-
tion on P with values in the Lie algebra of the group G.
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Let ®'(a) be the tangent map to ®(a) and ®*(a) be contragradient to
®(a) at the point a. The form @ is a form of Ad type, i.e.,

P*a)w=Ad,_ @ (1.1)

where Ad,eGL(g) is the tangent map to the internal automorphism of the
group G (i.e., it is an adjoint representation of a group G)

ad,(b)=aba™'

Due to the form w, we can introduce the distribution field of linear elements
H,, re P, where H,< T,(P) is a subspace of the space tangent to P at a point
r and

veH, < w(v)=0 (1.2)
We have
T.(P)=V,®H, (1.3)

where H, is called the subspace of horizontal vectors and V, that of vertical
vectors. For vertical vectors ve V, we have n'(v)=0. This means that v is
tangent to fibers. Let us define

v=hor(v)+ ver(v), hor(v)eH,, ver(v)eV, (1.4)

It is well known that the distribution H, is equivalent to the choice of the
connection @. We can reproduce the connection form @ demanding that
i, Hy, = Trn(E) is a vector space isomorphism (dim H,=dim E=4),
He 0y =P (g)H, [T»(E) is a tangent space to space-time F at a point 7 (r)].
We use the operation hor for forms, i.e.,

(hor B)(X, Y)=pB(hor X, hor Y) (1.5)
where X, Ye T,(P). The 2-form of curvature of the connection @ is
Q=hor do (1.6)

It is also a form of Ad type like @. The 2-form Q) obeys the structural Cartan
equation

Q=do +}[w, @] (1.7)
where [0, 0](X, Y)={w(X), ©(Y)]. Bianchi’s identity for o is
hor d2=0 (1.8)
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For the principal fiber bundle we use the following convenient scheme
(Figure 1A). The map e: U — P, U<E (U open), so that e z=idy, is
called a local section. From the physical point of view this means choosing

P
Y ! G
A I
T AR 2N A
| N // V\ //
T \ N/
| {
L
| e j
f t
L |
E u
A
p” &\ GL{n+4R)
N N\
M NN
| N
P/II
P w ? / G |x” )
7 [/
{ / /S
E GL(n,R)
"\ @
\ % GL(4R)
b SN \\
AN \
B

Fig. 1. (A) The principal fiber bundle P. (B) Principal fiber bundles P, P’, P”, and P”. Here
P" is the principal fiber bundle of frames over G.
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the gauge. Thus,
e*o=e*(0°X,)=A4"0"X,=A

(1.9)
e*Q=e*Q'X,) = ZF,‘,’VO“AG VX,
We also introduce the notation
Q“=3HS, 0" A G (1.10)

where 0% =7*(6*") and
Fi,=0,A4° —0,A% + Cs. A5 45

X.(a=1,2,...,dim G=n) are generators of the Lie algebra g of the group
G and '

[Xa, Xb] = Ccach

Analogously we can introduce a second local section f: U — P, and
corresponding to it A=f*w, F=f*Q. For every xe Uc E there is an element
g(x)eG such that f(x)=e(x)g(x) = Ryne(x)=P(e(x), g(x)). Due to equa—
tion (1.1) and an analogous formula for €, one gets A=Ad,-1A+g ' dg
and F=Ad,-'F. These formulas give a geometrical meaning of gauge
transformation.

In this paper we use also a linea connection on manifolds P and E
using the formalism of differential forms. So the basic quantity is a 1-form
of the connection ®”5. This is an R-valued (coefficient) connection form
and it is referred to the principal fiber bundle of frames with P or E as a
base. The 2-form of curvature is

Q' =doz+o’cr oy (1.11)
and the 2-form of torsion
®1=pgy”’ (1.12)

where 0 are basic forms, and D means the exterior covariant derivative
with respect to @ 5. The following relations define the interrelation between
our symbols and the generally used ones:

w*p=T"5c0
O'=10"c0% 1 0¢ (1.13)
QAB=‘;‘RABCD9C/\ HD

where I 5¢ are coefficients of the connection (they do not have to be sym-
metric in indices B and C), R”scp is the tensor of curvature, and Q7 is
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the tensor of torsion. Covariant exterior differentiation with respect to w5
is given by

DE'=d8'+ 0w cAES
p . ¢ c (1.14)
DX 5=d2"3+a7 C/\Z Bp— @ B/\ZAC
The forms of curvature Q5 and torsion ®* obey Bianchi identities
DQAB=0
(1.15)
F@A=QAB/\ 95

In the paper we use also Einstein’s + and — differentiations for the non-
symmetric metric tensor gz,

Dgsvs-=Dgan—84pQ 50 (1.16)

where D is the covariant exterior derivative with respect to @y and QD BC
is the tensor of torsion for @ “5. In a homolonomic system of coordinates
we easily get

Dga+p=8a+5-.c0 =(gac—8psl Pac— gl Pcr)8  (1.17)

All quantities introduced in this section and their precise definitions can be
found in Refs. 51 and 59-61.

Finally let us connect the general formalism of the principal fiber bundle
with the formalism of a linear connection on E or P.

Let M be an m-dimensional pseudo-Riemannian manifold with metric
g of arbitrary signature. Let T(M) be the tangent bundle and O(M, g) the
principal fiber bundle of frames (orthonormal frames) over M. The structure
group of O(M, g) is the group GI(m, R) or the subgroup of GI(m, R},
O(m—p, p), which leaves the metric invariant. Let Il be the projection of
O(M, g) onto M. Let X be a tangent vector at a point x in O(M, g). The
canonical or soldering form @ is an R”-valued form on O(M, g) whose Ath
component §“ at x of X is the Ath component of IT'(X) in the frame x. The
connection form & = “5X%, is a 1-form on O(M, g) which takes its values
in the Lie algebra g/(m, R) of Gi(m, R) or in o{m—p, p) of O(m—p, p) and
satisfies the structure equations

déd +5[é, ¢1=C=Hor dé (1.18)

where Hor is understood in the sense of @ and Q=Q7,X2, is a
gl (m, R)(o(m— p, p))-valued 2-form of the curvature. We can write equation
(1.18) using R*"-valued forms and commutation relations of the Lie algebra

gl (in, R)(o(m, m—p)),

Qp=do s+ cAd s (1.19)
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Taking any local section of O(M, g), e, one can get the coefficients of the
connection, curvature, basic forms, and torsion:
e*d AB =0 AB
C*QAB =0 AB
e*g'=0"

#0'=0"

(1.20)

The forms of the right-hand side of equations (1.20) are the forms defined
in equations (1.11)-(1.14), etc. We call this formalism a linear (affine, metric,
Riemannian, Einstein) connections on M.

In our theory it is necessary to consider at least four principal fiber
bundles: a principal fiber bundle P over E with a structural group G (a
gauge group), connection @, and horizontally operator hor; a principal fiber
bundie P’ of frames over (E, g) with the connection a“)"pXB,,= @', a struc-
tural group GI(4, R)(O(1, 3)), and an operator of horizontally hor; a princi-
pal fiber bundle P” of frames over (P, y) (a metrized fiber bundle P) with a
structural group GIl(4+n, R)(O(n+3, 1)), a connection &“3X%,=@, and
an operator of horizontality hor; and a principal fiber bundle of frames
P" over G with a projection I1", operator of horizontality (hor)”, a connec-
tion @, and the structural group Gl(n, R). Moreover, in order to simplify
considerations, we use the formalism of linear connection coefficients on
manifolds (E, g), (P, 7), and a principal fiber bundle formalism for P, i.e.,
a principal fiber bundle over E with the structural group G a gauge group.
I believe this is a way to make the formalism more natural and readable
(see Fig. 1B).

2. THE NONSYMMETRIC TENSOR ON A LIE GROUP

Let G be a Lie group and define on G a tensor field h=/h,,0" ® v® and
a field of a 2-form k =k, 0" A v°, where

dv®=—-%5C% 02 A€ Q.1

v“? is the usual left-invariant frame on G, and C?,, are structure constants.
Let X, be generators of a Lie algebra G— g; X, are left-invariant vector fields
on G and they are dual to the forms v“:

[Xa ’ Xb} = Cttlec (2.2)
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Using 4 and k, we construct a tensor field on G,
Loy = hap+ pkap (23)

where p is a real number. Recall that the left-invariant vector fields on G
are infinitesimal transformations of a right action of G on G. The symbol
Adg(g) means a matrix of the adjoint representation of the group G. For
brevity we denote it Ad g. We let R mean the right-action of the group G
on G, and L the left-action [R(g), L(g), geG].

We are looking for the following 4 and &:

R*(g)h=h (2.4)
R¥(g)k=k (2.5)
or, in terms of the tensor /,,
R*(g)l=1 (2.6)

The condition (2.5) can be rewritten

(RM(@)ke ( Xy, Yg) =keo(Xe 8, Yei8) =ke(Xer, Ye,) (2.52)

where g, g,€G.
Moreover, X, Y are left-invariant vector fields on G. Thus, X,=X,=X,
Y,=Y.=7Y, and

(RH@)kei (X, Y) =ky(Xg', Ye) =kyi(X, 1) (2.5b)
where £€G is a unit element of G.
In order to find 4 and k satisfying (2.4) and (2.5), we define a linear
connection on G such that
a")"b= "C"[,CUC (27)
Let the covariant differentiation with respect to & be V. and an
exterior covariant differentiation D. It is easy to see that this connection is
flat,
QY=dd "+ A =0 (2.8)

with nonzero torsion

(:)"=5v“=dv”+a‘)“b/\v"=%C"bcvbAv‘" (2.8a)
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and with a tensor of torsion
Q%= C% (2.9)

This connection is also metric. It means that the Killing-Cartan tensor
on the group G'is absolutely parallel with respect to & “,. A parallel transport
according to this connection is a right-action of the group G on G.

One can easily find that (2.4)-(2.6) are equivalent to the condition

Vclab=0 (210)

Thus in order to find & and k, we should solve equations (2.10) on the
group G. Let us prove that the system (2.10) is self-consistent.

In order to do this, let us consider the commutator of the covariant
derivatives

2V, Vila= R b+ ﬁbd.—klcb + Qprkvplcd (2.11)
Moreover, & is flat and we get
Wi Vilea= 0%Vl = C? iV ola,  V,ola=0 (2.12)

which proves the consistency of (2.10)
We can get this result using the equivalent form of equation (2.10),

Xelagt L, Cot 1, Cor=0 (2.13)

It is easy to see that a bi-invariant tensor 4 on G satisfies (2.13) identi-
cally (for example, a Killing-Cartan tensor).
Thus, one gets for a tensor k,,

vckab =Xckab + knb C:'r'c + kan Cl’;c =0 (2 14)

It is easy to see that if k,, satisfies (2.14), b - k,; satisfies this condition
as well for b=const.

In the case of an Abelian group, k is bi-invariant on G.

The interesting case in our theory is a semisimple group G. In this case
k. cannot be bi-invariant. The only bi-invariant 2-form on the semisimple
Lie group G is a zero form. Moreover, equation (2.14) always has a solution
on a semisimple group and k is right-invariant. Moreover, we suppose that
the symmetric part of / is bi-invariant (left- and right-invariant) and k only
right-invariant,
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We can also define k in a special way,
k(A, By=h([A4, Bl, V), A=AX,, B=BX, (2.15)
where
V.V4=0 (2.16)
V=V,® v”is a covector field on G (it is right-invariant) and 4 is a Killing-
Cartan tensor on G.

In order to be more familiar with the notion of a tensor k, we find it
for the group SO(3).°” In this case we have left-invariant vector fields

cos ¥ d sin z//(cote d ! 6)
e = _— —_—
al7}

dy sin 0 0
0 1 0
e;=sin wi+cos W(cotH——— - —> 2.17)
a6 dy sin 8 0¢
e _.—9—-'
3 oy
such that
lews €)= —Eamcec;  a,b,c=1,2,3 (2.18)

8, ¢, and v are Euler angles—the usual parametrization of SO(3),

0<O<n
O<wy<2m (2.19)
0<¢<2r
and £23=1, with &4, a Levi-Civita symbol.* In this case one can easily
integrate (2.16); one finds
Vi(8, ¢, w)=a(cos ¢ cos ¥ —cos d sin ¢ sin y)
+ b sin y sin 6 — ¢(sin ¢ cos y +cos B cos ¢ sin )
Va6, ¢, w)=a(sin w cos ¢ +cos @ cos y sin ¢ ) (2.20)
—b cos v sin 8+ c(cos 0 cos ¢ cos y —sin ¢ sin y)
V3(6, ¢, w)=asin ¢ sin 6 +b cos 0+ csin ¢ sin 6, a, b, c=const
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In the simpler case a=c=0, b#0, one gets
Vi=5 sin 0 sin y

V>=—bsin @ cos y (2.20a)

Vi=bcos 6, b=const

For
kab= Eapc Ve (221
we get
—{a(sin y cos ¢
(asin ¢ sin 8 +cos @ cos y sin @)
0 +bcos @ ~bcos ysin 8
+csin ¢ sin 0) +¢(cos 8 cos ¢ cos
‘ —sin ¢ sin y)]
[a(cos ¢ cos v
~(asin ¢sin @ —cos 6 sin ¢ sin y)
k= +bcos b 0 +b sin y sin 8
+ ¢ sin ¢ sin 8) —¢(sin p cos
+cos 8 cos ¢ sin )]
a(sin v cos ¢ —[a(cos ¢ cos v
+cos 6 cos ¥ sin @) —cos 8 sin ¢ sin )
—bcos ysin 0 +b sin y sin 6 0
+¢(cos 8 cos ¢ cos v —¢(sin ¢ cos y
\ —sin ¢ sin y) +cos 8 cos ¢ sin )]
(2.22)
In the simpler case for a=c=0, b#0, one gets
0 bcos 0 —bsin 0 cos y
ko= —bcos@ 0 bsin 0 cos (2.22a)

bsinfcosy -—bsin@siny 0
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Thus, if we choose for /4 a Kiiling—Cartan tensor on SO(3) [this is a unique
bi-invariant tensor on SO(3) modulo constant factor],

hab = "25,1[, (223)
we easily get

—pla(sin y cos ¢

u(asin ¢sin 8 +cos 6 cos y sin @)
-2 +fcos 8 — B cos ysin
+ ¥ sin ¢ sin 8) +y(cos 0 cos ¢ cos

~sin ¢ sin y)]
pla(cos ¢ cos ¢

—cos 8 sin ¢ sin )
[p= -2 + f sin y sin 6
—y(sin ¢ cos y
+cos 8 cos ¢ sin )]

pla(sin w cos ¢ —pla(cos ¢ cos y
+cos 8 cos v sin ¢) —cos 8 sin ¢ sin )
—pBcos ysin 8 + fsin ysin @ -2
+y(cos 8 cos ¢ cos ~y(sin dcos ¢
—sin ¢ sin y)] +cos 8 cos ¢ sin y)]

(2.24)

where u=n(@+b*+c*)'?, n’=1, a=a/p, p=b/u, and y=c/u. In the
simpler case a=c¢=0, b0, one gets (absorbing by u)

-2 jcos 6 4 sin 8 cos
Ly= —u cos 6 -2 1 sin € cos ¥ (2.24a)
~psin @cos ¥ —usin @ cos -2

For an inverse tensor /® such that
1= 1"1,= 5", (2.25)
we have

Aub
A

lab

(2.26)
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where A=det(/,;) =—2(4+ u?), A” is a cofactor matrix, and

A"=4+ p?sin® O sin’ y

A= —(2p cos O+ p*sin” 0 sin y cos y)

A" =(u?cos 0 sin @ sin v — 2y sin 6 cos y)

A% = (2p cos @ — p? sin? 0 sin y cos )

A#=(4+ p” sin® O cos® y) (2.27)

AP =—(2pu sin 0 sin w + pu? cos @ sin 0 cos )

A* = (u? cos @ sin 6 sin y + 24 sin 0 cos y)

A**=(2p sin @ sin y — i’ cos 6 sin 8 cos y)

A¥®=(4+ p?*cos® 0)
In the case of SO(3), equation (2.22) is the most general tensor satisfying
(2.5) except for a constant factor in front. Thus, this tensor is unique for
SO(3) modulo a constant factor.

In the case of any SO(n) one can find k and / similarly using Euler angle
parametrization and so for the classical groups SU(n), Sp(2n), G,, F,, Es,
E;, Eg. In the case of solvable and nilpotent groups we can also try to find
bi-invariant skew-symmetric tensors.

Finally, we suggest a general form of the tensor k,, on a semi-simple

group G, i.e., such that equation (2.4) is satisfied. The solutions of equations
(2.10) and (2.14) are as follows:

Lap(€°) = Lup (£)(e* ) o),
and
kea(€©) =kan(£)(e" ) L")’y
One writes
k@) =fur U ()U")(2),  2€G (2.28)

where U(g) =Ads(g) is an adjoint representation of the group G. It is easy
to see that for (2.28) we have

Voka=0 (2.29)
Sar="—fpa=const (2.30)
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and it is defined in the representation space of the adjoint representation of
the group G. In the case of the group SO(3) one has

Jab= €abe S (2.31)
kar=€ap Ve (2.31a)

and
Va=f.U g) (2.32)

If we choose f.= (0, 0, b), we get equation (2.20a). Moreover, this is always
possible because an orthogonal [SO(3)] transformation can transform any
vector finto (0, 0, | f||), where || /|| is the length of f. The semisimple Lie
group G can be considered a Riemannian manifold equipped with a bi-
invariant tensor 4 (a Killing-Cartan tensor) and a connection induced by
this tensor. This Riemannian manifold has a constant curvature. Such a
manifold has a maximal group of isometries H of dimension in(n+1), n=
dim G.® (The isometry is here understood in the sense of the metric meas-
ured along geodetic lines in Riemannian geometry induced by a Killing-
Cartan tensor.) This group is a Lie group. It is easy to see that for
G=S80(3) we have H=S0(3)®S0(3) and dim SO(3)®S0(3)=6,
dim SO(3)=3. The group SO(3) leaves the Killing-Cartan tensor A,
invariant

hoy A" o AY y=hgy (2.33)

where 4AeS0(3).

Moreover, f;, has exactly three arbitrary parameters and solutions of
equation (2.14) have the same freedom in arbitrary constants. This suggests
that the tensor (2.28) could be in some sense unique modulo an isometry on
SO(3) and a constant factor b. In this case the classification of &, tensors
on an SO(3) could be reduced to the classification of skew-symmetric tensors
Ja» with respect to the action of the group SO(3). In general, the situation
is more complex, because SO(n), n=dim G, does not leave the commutator
(Lie bracket) invariant.

Let us suppose that G is compact. In this case we should find all
inequivalent f,, tensors with respect to an orthogonal transformation
AeSO(n). This means we should transform f,, to a canonical form via an
orthogonal matrix, i.e.,

(fa)=f=f'=([i)=ATfA=A4'f4 (2.34)
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For skew-symmetric matrices we have the following canonical forms, the
so-called block-diagonal matrices.
For n=2m,

_gl
= _ (2.35)
0 &
O _gm 0
or, for n=2m+1,
[0 & T
o O
r= "0 e o (2.36)
O £ 0 0
i 0 0 0

where &', €%, ..., E™ are real numbers. In order to find them, we need to
solve a secular equation for f,

det(ul,—f)=p"+a)(fIp" *+a(fHp" 2+ - (237
Inz(aji)i,j=l,2,“..n

The coefficients a;, a,, ... are invariant with respect to an action of the
group O(n) [SO(n)] and they are functions of &', ..., ™. Thus, in the case
of a compact semisimple Lie group the skew-symmetric tensor k., on G is
defined as follows:

k(@) =b  far U (@) U”(2) (2.38)
where b is a constant real factor and ( f,;) =/ is given by

0 1
~1 0

0 él O

f=AT -& 0 A (239)

0 gmnl
O —~£M—1 0

-
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for n=2m, or

f=47

for n=2m-+1.

Supposing that k., =diag(d,, A2, ...

one gets

Y

lab(g) = A4 7

for n=2m or
F
_Cl

Lo(e)=A"

for n=2m+1.

G

L &
_52 A4

O

0 ém—l

__ém—l

O

631

A (2.39)

0

0]

, An), where n=2m or n=2m+1,

A=AT[(e)A (2.39%)
A'Zm—l ém
_é’m A‘ij
O
A=A"Ie)A
//{'2)11—1 ém
_élm )‘2»1
)Qm+ 1
(2.39a%)

Moreover, if G is compact, we have A;= 4, i=1,2,...,n, and 1<0.
This is because any bi-invariant symmetric tensor is proportional to the
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Killing-Cartan tensor. In particular, the Tr tensor commonly used in Yang-
Mills theory is proportional to A,,. Thus, b= A(Tr),= A8, A<0. [For a
particular normalization of generators, Tr({X,, X»})=28..] Let us remark
that, in general, if k(&) and A, commute (thus, for the moment, I do not
suppose that G is compact), we have ;(&) = (47 '1(£)A),,, where A£Gl (n, R)
and u4(g) = U" o(g) U”s(&)(4 " T(e) Aus.

One can say, of course, that k, tensors are defined with more arbitrari-
ness than are bi-invariant, symmetric tensors. This is because & is only right-
invariant.

Let us notice that

Jar=ka(€) (2.40)
(& is the unit element of G) and
Ry kay(8) =kar(28") = k() Ua) () U(8") (241)

where g, g'€G.

In the case of G=S0(3), k. is unique up to an isometry of the Riemann-
ian manifold with the bi-invariant tensor as a metric tensor and a constant
factor. This suggests that the k,, tensor given in the form (2.15)-(2.16) and
(2.31)-(2.32) is an analogue of the Killing-Cartan tensor for k., (skew-
symmetric). Moreover, the vector f/ can be transformed by an orthogonal
[O(n)] transformation into

©0,0,...,=1/1D

n times (2.42)
Thus, one gets
ka(g)=b- Ci f2 U (8) (2.43)
where b is a constant factor and
NP 0,0,...,1)
(fc) f n times (2'44)

Thus, we can write k in a more compact form
k(A, B)(g)=b " h([4, B], Ad, f*) (2.45)

where A=A4"X,, B=B“X,.
Using the bi-invariancy of the Killing-Cartan tensor, one can write

k(4, B)(g)=b - h(Ad,[4, B, /°) (2.45a)
Moreover, if there is §eG such that §°=g, we get

k(A, BY(g®)=b - h(Ad;-1[A4, B], Ad, °) (2.46)
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We find an interpretation of the factor » for K given by formulas
(2.45)-(2.46).
We get
Kook =KW K pke oy = BP||Ad, £ O = B 2.47)
Thus, we have
b=tk k™)"? (2.48)

Finally, let us notice that we can repeat the considerations changing right
(left)-invariant to left (right)-invariant in all places. In this case we can
consider a left-invariant 2-form &k and a left-invariant nonsymmetric tensor
on a Lie group G.

3. THE NONSYMMETRIC METRIZATION OF THE BUNDLE P

Let us introduce the principal fiber bundle P over the space-time E with
the structural group G and with the projection . Let us suppose that (E, g) is
a manifold with a nonsymmetric metric tensor of the signature (—, —, —, +),

Zuv =8+ 8y 3.1}

Let us introduce a natural frame on P,
07=(n*(8%), 0°= 10", A=const (3.2)
It is convenient to introduce the following notations. Capital Latin indices
A, B, Crunoverl,2,3,...,n+4, n=dim G. Lower case Greek indices take
the values a, B, ¥, §=1, 2, 3, 4 and lower case Latin cases a, b, ¢, d=5,
6,...,n+4. The symbol bar over 8% and other quantities indicates that

these quantities are defined on E.
It is easy to see that the existence of the nonsymmetric metric on E is
equivalent to introducing two independent geometrical quantities on E,

§=2,0" ®0°=g.pd"® 6’ (3.3)
g=g,1ﬁ g‘a/\ (7‘3=g[,,,;](_9”/\§/3 (34)

i.e., the symmetric metric tensor g on £ and 2-form g. On the group G
we can introduce a bi-invariant symmetric tensor called the Killing-Cartan
tensor,

h(A, B)=Tr(Ad' - Ad}) (3.5)

where Ad4(C)=[4, C] (it is tangent to Ad, i.e., it is an “infinitesimal” Ad
transformation). It is easy to see that

h(A, By=hn, A" B® (3.6)
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where
hab= CcndCdbca hab=hbaa A =A"Xa7 B=BaXa

This tensor is distinguished by the group structure, but there are of course
other bi-invariant tensors on G. Normally, it is supposed that G is semi-
simple. This means that det(h,,)#0. In this construction we use /s = h.
(the bi-invariant tensor on G) in order to get a proper limit (i.e., the non-
Abelian Kaluza—Klein theory) for g =0.

For a natural 2-form &k on G, or a natural skew-symmetric right-invari-
ant tensor, we choose k described in Section 2; k is zero for U(1). Let us
turn to the nonsymmetric natural metrization of P. Let us suppose that

(X, Y)=g(n'X, n'Y)+ X p’h(o(X), o(Y)) (3.7
y(X, Y)=g(n'X, n'Y) + pAp*k(o(X), o(Y)) (3.8)

p=const and its dimensionless, X, YeTan(P), and p= p(x) is a scalar field
defined on E. The formula (3.7) was introduced by A. Trautman (in the
case with p=1) for the symmetric natural metrization of P and it was used
to construct the Kaluza-Klein theory for U(1) and non-Abelian generaliza-
tions of this theory. It is easy to see that

7=n*8Q p’ha0° ® 0 (3.9)
y=n*g+upka0° A 6° (3.10)
or
Bap| O )
= 3.11
Y48 ( o | o (3.11)
Eap 0
y =(—+——) (3.12)
e 0 ,‘lpzkab
For

Y4B=7Y )T V148

one easily gets

yAB=(g"” 0 ) (3.13)
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where [;="h.,+ k. The tensor 7,5 has this simple form in the natural
frame on P, U“. This frame is unholonomical, because

d9a=§(Hauv9”/\9V_% C0° 7 ) #0 (3.14)

y is invariant with respect to the right-action of the group on P. In the case
with k., =0 we have

gaﬁ 0 )
= 3.15
Y4B ( 0 pzhab ( )
For the electromagnetic case [G =U(1)] one easily finds
_(8p | O
7AB“< 0 —pz) (3.16)

Now let us take a section e: E — P and attach to it a frame 09, a=
5,6,...,n+4, selecting X" =const on a fiber in such a way that e is given
by the condition e*v“=0 and the fundamental fields {, such that v*({z)=
83 satisfy {{, £ ]1=(1/)C L.

Thus, we have

1 -
W =1 VX, +n*(4°, 6")X,
where

Fo=A=A0"X,

In this frame the tensor takes the form

ap APy As A | Ap*ly A
)V,D lacA B ‘ P lab
where
labzhab+ﬂkab
This frame is also unholonomic. One easily finds
~1
dv'=— C%° AV 3.18
57, €% (3.18)

The nonsymmetric theory of gravilation uses the nonsymmetric metric g,
such that

g.8" =¢,8"=56", (3.19)
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where the order of indices is important. If G is semisimple and k,,=0,
lab = hab 5 det(hab) 5é 0

and
haph® =8 (3.20)
Thus, one easily finds in this case
Yacy* =ycayP=61 (3.21)

where the order of indices is important. We have the same for the electro-
magnetic case [G=U(1)]. In general, if det(/,,) #0, then

Lg% =lp " = &3 (3.22)

where the order of indices is important. From (3.22) we have (3.21) for the
general nonsymmetric metric y.
It is easy to see that

O (g)7=7
¥(@)y=y
and 745 is an invariant tensor with respect to the right-action of the group
Gon P.
In the case of any Abelian group the condition (3.23) is stronger and

we get that y 45 is bi-invariant. Thus, in the case of G=U(1) (electromagnetic
case)

(3.23)

Es7=0=&sy (3.24)
where £, is a dual base

0%(Es) =65 (3.25)
A, B=1,2,3,4,5,

Ea=(&a, &) (3.26)

Let us come back to the connection @ “, defined on the group G. For a
typical fiber that is diffeomorphic to G, we can define é“, on every fiber
F.~G, xeE. Due to a local trivialization of the bundle P, we can define &7,
on every set U x G, where U< E and is open. Thus, we get a linear connection

on P such that
0
ca"5=<0 | ) (3.27)
0 |—(1/A)C%.0°

defined in a frame 87 =(7*(8%), 8), where 0 is a frame on E and 6 is a
horizontal lift base.
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This connection can be examined in a systematic way. Let us introduce
a metric on P in the following way:

P=1*n@®h,0°® 6° (3.28)

where n= n,,ve’ " ® 8" is a Minkowski tensor and A,, is a Killing—Cartan
tensor on G. We get

N | 0 > AB (n”ﬂ 0 )
= and = 3.29
PaB ( 0 hﬂ[, Y4 0 hab ( )

The connection & “5 can be defined as

* 50 0
) AB:<%) (3.27a)
x b

where & % is a trivial connection on the Minkowski space, &, is the connec-
tion defined in Section 2.2, and ¢, is a diffeomorphism ¢.: F, —» G, xe U.
It is easy to check that

Dp.z=0=Dp”® (3.30)

where D is an exterior covariant differential with respect to & “5. One can
easily calculate the torsion for &g,

0% =AH", (3.31a)
A1
Q%%e== C% (3.31b)
A
and the curvature tensor
R, =AX, H ,, (3.32)

(the remaining torsion and curvature components are zero).

The connection &5 is neither flat nor torsionless. Moreover, it is still
metric as a connection &, from Section 2.2.

The covariant differentiation with respect to this connection is con-
nected to the right-action of the group G on P. Thus, the condition of the
right-invariance of the p-form E*-*, 5 on P is equivalent to

{4

VEAAL, o =0 (3.33)

1By

where V, is a covariant derivative with respect to &5 in vertical directions
on P. This means right-invariance of E. This can be written

vvs,-r(.\')E:’O (3333)
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ver is understood in the sense of @. We have
P'(g)E=E (3.39)

where geG and

B5= (EA,...A,B,...B,,,) - (pBIB'.pBZBZ_ . pB,,,B,',,EA,..‘A,Bi )
B

For a connection @ on a bundle P, of curvature Q, one gets

Vio=V,Q=0 (3.34%)
Thus, we can rewrite equation (3.23)
Vay=V.7=0 (3.35)
This means that
Va¥4s=0 (3.36)
or
Vierco? =0 (3.362)

For every linear connection @5 defined on P compatible in some sense with
Yap We get

O*(g)w45=Ad, 048 (3.37)

which means that @ 45 is right-invariant with respect to the right-action of
the group G on P. We say the same for the 2-form of torsion and the 2-form
of curvature derived for 0”5, i.e.,

V.Q;=V,0"=0 (3.38)

The curvature scalar is invariant with respect to the right-action of the group
Gon P,

0=V,R=X,R=(,R (3.39)

The condition (3.37) is the same as in the classical Kaluza-Klein (Jordan-
Thiry) theory in the non-Abelian case. A parallel transport with respect to
the connection &* 5 means simply a right-action of the group G on P.

Our subject of investigation consists in looking for a generalization of
the geometry from Einstein’s unified field theory (the so-called Einstein—
Kaufman theory*>*") defined on P, i.e., for a connection @5 such that

D'}’AB='}’ADQDBEBE (3.40)

where D is the exterior, covariant differential with respect to the connection
o5 and QD s is the tensor for w5, We suppose that this connection is
right-invariant with respect to the right-action of the group G.
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We can write equations (3.37)-(3.39) for the torsion, curvature, and
scalar of curvature for 5. In this way we consider the Einstein-Kaufman
G-structure on the bundle of linear frames over the manifold P (i.e., a right
G-structure).

We can repeat all the considerations changing right (left)-invariant into
left (right)-invariant in all places.

In this section we define @5 as a collection of 1-forms defined on the
manifold P (a gauge bundle manifold) and we choose for w”z a lift horizon-
tal frame (connected to the connection @ on the gauge bundle).

The collection of 1-forms ®”5 becomes a linear connection on P iff it
satisfies the following transformation properties:

o' =27 (P sE T p(p)—Z T AP s(p)  (3.41)
where
X(p)eGL(n+4,R), peU,cP
and
0°=X°.(p)0” (3.42)

is a simultaneous transformation propery of a frame. Having o with
transformation properties (3.41)-(3.42), we can lift it on a principal fiber
bundle of frames over P with the structural group GL(n+4, R), getting a
1-form of connection @,

@:=Adgrm+an (g, VM@ s X %) —g, ' dg,] (3.43)
where II is a projection defined on this principal fiber bundle of frames and
gyt z€ll™'(Uy) = g,(2) = (PTorinr a0 ¥p(2)) ™
eGl(n+4, R), pelU,cP

pr means a projection on G/ (n+4, R) in a local trivialization of the bundle
P", ¥ is an action of GL(n+4, R) on a principal fiber bundle of frames over
P.¥Y - Gl(nt+t4, R)x P" — P, and ¥, is defined for G/ (n+4, R) x U,. In
this way we have an action of GL(n+4, R) on the bundle and for &,

\F*(g)d)=AdGL(n+4.R)(g_l)dj (3.44)

X" are generators of the Lie algebr~a gl(n+4,R) of GL(n+4,R) and
geGl(n+4, R). For a soldering form §* one gets

g4 =g, IT*(0") (3.45)
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Taking any two sections of the principal fiber bundle of P” frames E and F
such that

E*Cl’) = (OIA’B'XB'A'

(3.46
Fr*o= C()ABXBA )
E*@"'=¢"
i gt (3.47)

one gets the transformation properties (3.41) and (3.42). In such a way that

E(p)=F(p)X(p) (3.48)
equation (3.40) can be rewritten in a more compact form
Vy=S§ (349

where

S(X, Y, Z)=[Tr(y ® DI(X, Y, Z) =}, y(X, e)0*(Q(Y, Z))

o(y, Z) =—0(Z, Y)

is the torsion of the connection @, X, Y, Z are contravariant vector fields;
and 6 and e, 8”(ep)=6"5, are dual bases.
Or, in a different form,

V.7(X, Y)=S(X, Y, Z) (3.50)

V is a covariant derivative with respect to the connection @& on the fiber
bundle of frames.

Moreover, now we consider 7, 0, X, Y, Z, etc., as geometrical objects
living on appropriate associated fiber bundles to the fiber bundlie of frames.
The condition (3.50) gives us the Einstein-Kaufman connection & on the
principal fiber bundle of frames over P. For & right-invariant with respect
to the action of a group G on this bundle of frames (lifted to this bundle
from P), the condition (3.50) is also right-invariant.

4. FORMULATION OF THE NONSYMMETRIC
JORDAN-THIRY THEORY

Let P be the principal fiber bundle with the structural group G=U(1)
over space-time E with a projection 7 and let us define on this bundle a
connection a. We call this bundle an electromagnetic bundle and a an
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electromagnetic connection. For the electromagnetic bundle P we can specify
all quantities introduced in Sections 1-3. We have
Q=da=3n*(F,,0" A 8")
where
Fy=0,4,—08,A,, e*a=A,0"

and e is a local section of P. Here A4, is the four-potential of the electro-
magnetic field and F,, is its strength. The Bianchi identity is

dQ=0 (4.%)

and due to this, the four-potential exists. It is of course the first Maxwell
equation.
On space-time E we define a nonsymmetric metric tensor g4 such that

gap™8 af +g[a 1
B (af) B (4‘1)
2.p8"" =2p.8"" =8

where the order of indices is important. We define also on E two connections
@“gand W,

@°y=0%,0" (4.2)
and
Wog=W,0"=0"3—55%W (4.3)
where
W= W,07 =} (W°,,— W°,,)8"

For the connection &% we suppose the following conditions:

D—ga+ﬂ—— =D_gaﬂ—gu5 ) Qaﬁy(f)o},:O

Qaﬂa(f) =0

where D is the exterior covariant derivative with respect to @ and 0%,(I)
is the torsion of @%4.

Thus, we have on the space-time E all the quantities from NG

Now let us turn to the natural nonsymmetric metrization of the bundle P.
According to Section 1, we have

F=n*g—p’0°® 0°=1*(gup)9" ® 0")—p’0°® 6°
y = n*g=n*(8umf” A7)

4.4)

T (34,63,64)

(4.5)
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where 0° = Aa. From the classical Kaluza-Klein theory we know that!'® 1=
2 (we work with an appropriate system of units), and we have

_{8ap 0
Yas ( : _p2> (4.6)
The tensor y 45 has this shape in a lift horizontal base, which is of course
nonholonomic. We can find it in a holonomic system of coordinates. Let us
take a section e: E — P and attach to it a coordinate x°, selecting x* = const
on the fiber in such a way that e is given by the condition x*=0 and {s=
8/0x’. Then we have e* dx’=0 and

a=%dx5+n*(Ay(7”), where ~ A=4,0"=¢*a.

In this coordinate system the tensor y takes the form

2.2 2
7AB=<&'£ A p Ao Ap | ~Ap 2Aa> (4.62)
-’45 | —p

In order to have the correct dimension of a four-potential we should rather
write e*q = (q/fic)A = pu A, where q is an elementary charge and 7 is Planck’s
constant. The same is true for the curvature of connection on the electro-
magnetic bundle Q= Aun*(F), F=1F,,0% §*. Moreover, it can be absorbed
by a constant A.

Now we define on P a connection "5 bi-invariant with respect to the
action of the group U(1) on P, such that

Dy4+8-=Dyap— VADQDBC(F)0C= 0
op=T"pc0°
D is the exterior covariant derivative with respect to the connection o”5,

and Q”c(T") is the tensor of torsion for the connection ®”5.
After some calculations one finds

4.7)

p =< T (@°p) + P8 Hsp0® | Hp, 07+ (1/p>gﬂsg”‘”p,795)
Pe (Hyy = 2F,)0" +pg7p,0° | (1/p)Es8“p.ub”
(4.8)
where §*% is the inverse tensor for g, i.€., 8°% * gapy =06, and H, 5 is

a tensor defined on E such that
8558" Hyut 8as8” Hpy = 28458 Fp, (4.9)
We define on P a second connection such that
Wis=0"3—353W (4.10)
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where W is defined in (4.3). It is easy to see that W is a horizontal 1-form
W=hor W (4.11)

(horizontality is understood in the sense of the connection a defined on the
bundle P). Thus, we have on P all five-dimensional analogues of the quanti-
ties from Moffat’s theory of gravitation i.e., W5, o5, and 7/AB.(63'65)

They are also analogues to the quantities from Einstein’s unified field
theory. y 45, ®* 5, and W* z are E(1)-invariant. Thus, we get the Einstein—
Kaufman U(1) structure.

5. GEODETIC EQUATION

Let us write an equation for geodesics I' = P with respect to the connec-
tion ®“5 on P.
VUu =0
uBVBuA =()

(5.1)

where u [U“(¢)] is a tangent vector to the geodesic line and V means a
covariant derivative with respect to the connection w”5. Using (4.8), one
easily finds

D’ua a ~(Ba
t+uspz(g""(Hﬂr2Fﬂy)+g" up P+ @Y p 870 ,=0  (5.2)
di’ 0’ d
A P H =0 (53)
dt p dt

where D/dt means covariant derivative with respect to @“ along a curve to
which u(¢) is tangent and

dp 5
s T u 5.4
o (5.4)
One easily transforms (5.3) into
d
= (") + 3 Hypu"u" =0 (5.5)
t
It is easy to see that (5.5) has a first integral
2u’p’=const  iff H,;=—Hp, (5.6)

In the Kaluza-Klein theory or in the Jordan-Thiry theory, 2u’p” has an
interpretation as q/m, for a test particle, where ¢ is the charge and 1, is the
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rest mass of the test particle. This first integral means that q/mqg does not
change during the movement of the test particle. Finally we get

— 2
Du® q a o 1 ~(Ba 1
+ L (g F,,—gl u]Huﬁ)uﬁ__<_q_) g? >(._2> =0
dt Mo 8 my p B
' (5.7)
i=const
My

Thus, we get a Lorentz force term in the equation of motion for a test
particle. This term really differs from the analogous term in the Kaluza-
Klein theory. If the metric is symmetric, we get the classical Lorentz force
term. We also obtain an additional term

1{qY 1
—__ (_q_> g(ﬂa)(_j) (5.8)
8 my P B

which expresses the interaction of the test particle with the scalar field p. If
p=const, this term vanishes.

Equations (5.7) are defined on an electromagnetic bundle P. The equa-
tions of motion for a test particle should be defined on E. This can be easily
achieved by taking a local section of P. For U(1) Abelian, F,, and H,, are
well defined on E and we get exactly equation (5.7).

One can examine geodetic equations in a more geometrical way, i.e.,

hor(V,u)=ver(V,u)=0 (5.9
We get
hor(Vioreyhor(u()) + Veerquyhor(u(t))
+ VeernVer (u(f)) + Viorweyver(u())) =0
Ver(Vhorwn ver (u(f)) + Vverwiy ver(u())
+ Viorwver(u()) + Vieuaphor (u(t))) =0

(5.10)

Demanding that equation (5.10) possesses the first integral of motion
v={f(ver(u))=const (5.11)

where fis a linear function of its argument, we get, according to the previous
investigations,

dv=

— on I 5.12
- n (5-12)

and f(y)=2p".
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Finally, it is of interest to mention that the exponential map on (2, y),
exp: T(P) — P [expp: Tanp(P) — P for each pe P, expp(v)=I,(1), where
I',(1) is an endpoint of a segment of a geodesic through p whose tangent at
P is v for an arc parameter equal to 1], defines a normal coordinate system.
Choosing an orthonormal basis {es} for Tan,(P), we define a coordinate
system in a neighborhood of p by assigning to the point expp(} x%e,) the
coordinates (x', x% x?, x*, x°). We call them normal coordinates. Usually
in such a case one defines the function

:Fs2=(xl)2_(x2)2_(x3)2_(x4)2__(x5)2

The gradient of s is 8/8s, where {(grad f, X>=df(X), XeT(P). Using this
function, we can define the so-called polar coordinates s, 6,, 8., 03, 0,
(which are defined like the above normal coordinates). It is easy to see that
the physical interpretation of the normal coordinates is as follows. They are
the initial velocities and electric charges of test particles in such a way that
x°=(1/2p*}(q/mp) and x*=u§. Since rays through the origin are geodesics,
normal coordinates have the property that Va/axA(a/(?xA)=0. Thus, (V, 8/
dx")|»=0. For these reasons normal coordinates are convenient to use. In
the case of spacelike geodesics our interpretation breaks down, because they
correspond to tachyon trajectories. Nonetheless, we can maintain this by
supposing that ug corresponds to the initial velocity of a tachyon as well.

6. GEOMETRY ON THE MANIFOLD P

Let us turn to the calculation of the torsion for w”y,

e*(I')=Do"
One easily gets
Qaﬂy(r) = Q_;y(f) (6.1)
Q°sp(T)=—0%s(I) =20’ (8" Hs5~8""F,p) (6.2)
Qs,uv(r)zz(Fuv—H,uv) (63)
2
Q’sp(T)=—0%s(I") =; 2587 p.a (6.4)

Let us define a tensor Kz, such that

Hp,=Fp,+Kpg, (6.5)
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Now we have
0’ (T)=—2Kp, (6.6)

We find later a physical interpretation of this tensor. Now we calculate a
2-form of curvature for the connection @“z. We have

Q' (I =do"z+ o'cr 05 (6.7)
One easily gets, using (4.8) and (6.7),

Q (1) =Q% () + p*[8°* Hsp F i —8"" (Hpyiy) ~ 2F1v1y) Hiprn 10" A 6°
+ [V#(PzgsaHriﬂ) + PHﬁug(ya)P,y
+ pg™ (H,,—2F,.)gs:8"p 10" A 0° " (6.8a)

. 1 N
Q)= [V[u H,p +5 H,307,(T") +; 2558 °2p.a Fuy
1 (e v
+— g5’ 5)P,|a1H|mv1]9” no
p
i
+[V ( g5,8Vp. >+p2g57H5,,Hn,

] a v
nga#gayg‘ g up ]G”AGS (6.8b)

Q*S(T) = (Vi 0’8" (Hop — 2Fp)] +3 078" (H 15— 2F ) Q1 (T)
+p8 7 p.y Fuvt pg g8 p jai(Hynp = 2F0p) } 04 A 07
+[V,(pg"p.,) + p'e’ g Hs (Hp, —2Fp,)
— 25,878 p ,p. 10" A 6° (6.8¢)

1 ~(a
QSS(F) [V[u(p glﬁlv}g ) P yg( G)P aqu(F)

1 v
— p*Hpp 8" (H,50 = 2F, ]a)+_‘g5[ﬂglylv}g(a6)g(ﬂ” P.B]G”/\G

FPE .y Hpu— pBp o(Hys = 2F,5)10° A 0¥ (6.8d)
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where ﬁ"ﬁ(f‘ ) is the 2-form of curvature of the connection &, is the
covariant derivative with respect to @°, and 0, (T) is the tensor of torsion
for @“5. One easily reads from (6.8a)-(6.8d) the tensor of curvature
for ®”5. We have

R guy= R, +20°[8°" Hsp Fyry — 8 (Hpyyy = 2F1010) Hipya) (6.9a)
R pus=—R"ps,

=Vu(p’8" Hsp) + pHp 877 p., + pg* (Huy ~2F,)8ps8 " p.a (6.95)
R®puy =2V, Hyp+ HypQ7,0(F)

2, 2 .
+2 800 o Fuv += 850,87 0y Hipivt (6.9¢)
p p
R’pus=—R’gs,
7 2 ~(a 1 ~(aS)m(V
= Vu(; gps8 J’p,a) +p’g’ Hsp H,, +;5 g5, 8V p.p.,  (69d)

RﬂSpv = 2§[u[p2gaﬁ(HV]ﬁ - 2FV]/’)]
+ ngaB(H'yﬂ - 2pr)Q7” v(l:) + 2pg(ya)p,}'FﬂV
+2pg" 51,8 101 (Huyp— 2F 1) (6.9¢)

a _ a
R 5;:5__R 55u

= 6# (ng(m)p,y) + P4g6ang6‘/(Hﬂy —2Fp,) — 8su g(ya)g(vs)p,yp,v
5 _ /1 5 1 us _ (6.91)
R Suv = 2V[u(; g|5|v]§(“ )pla> +; gﬁyg “ )p,aQyuv(F)

2 - (28)m
— 20’8 Hyp (Hyga = 2Fu3a) + ; 2518118 8" pra pis (6.9g)
R’ss=—R’su5= —pg“® pia(Hys— 2F,5) + pg7Pp , H, (6.9h)

In Section 4 we defined the connection W, in terms of @ 5. Let us calculate
the two-form of curvature for W*g,

Ql(W)y=dW s+ WicA W (6.10)
We have

QU(W)=Q " 5(T) -5 aW,10" A 07 (6.11)
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One easily finds the relations between the curvature tensors for W',
and 5.

R®py(W) =R, (T) =585 Wiy (6.12a)
RP5, (W)= R*5,(T) =5 Wiy (6.12b)
R%ps (W)= R"ps5,(T") (6.12¢c)
R®pus(W)=R’p,s(T') (6.12d)

Now we pass to the calculation of the contraction of R pcp(T),
ApdT)= RABCA(F) (6.13)

and the Ricci scalar
A(T) =y A45(T)=2""45,(T) —# Ass (6.14)
After some calculations one easily gets
AT)=AD) + (8" )~ HFuy]
+gH [Vu(% gﬂﬁ@‘“‘”ﬂmﬂ +# Va(p27p.,) (6.15)

Now we can calculate the Moffat-Ricci curvature scalar for the con-
nection @“5:

R(T) =y TR 5ea(T) +3 R 45AT)] (6.16)

One easily gets after some calculations

JY RIT)=J~-¢ p{R(F) +p?[2(8" V) — H Foy)

1 ~(a
t 285, 8% p p,a}+ 0, K* (6.17)

where
K*=3J=g p (8" —g"2,,87")
R(T) is the Moffat-Ricci curvature scalar for the connection @°g on E,

}Iangﬂ,ugyapr, Hﬁy—_—"“H},ﬂ (618)
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and

g5ﬂgyaHya +g05g67Hﬂ7=2g05g67Fﬂ7 (619)

Now we are able to write \/y R(W), where R(W) is the Moffat-Ricci curva-
ture scalar for the connection W*; on P, and we easily find

VY R(W)=\~g p{ﬁ( W)+ p[2(g" 'F,.)" — H™ Fyy)

1 ~(a
+I—)3 gl"lg;,8%p , p,,,} +0,K" (6.20)

where R(W) is the Moffat-Ricci curvature scalar for the connection W%,
on E. It is easy to see that from the variational principle point of view it is
enough to consider in the place of \/y R(W) only

N W)-:ng{k'( )+ P 2@ Fy) = HFop]

l v, ~(a
+,—)5 g"1gs,8%%p, p,a} (6.21)

The four-divergence J,K* (an exact form) plays role in topological
considerations.

Finally let us note some identities for F,, and H,,. One gets from
equation (1.9).

g[ﬂV]HFV .__g[u V]F[IV (6.22)
gawgﬂﬂHaﬁ chu =gawgmlHaﬁFw,u (623)
gdvga”Haa Fuv + gﬂagVBHDc Fyv = 2g“GgVﬁvaF/30' (624)

7. CONFORMAL TRANSFORMATION OF g,,.
TRANSFORMATION OF THE SCALAR FIELD p

In Section 3.4 we get the Moffat-Ricci curvature scalar for the connec-
tion Wz on P. The appropriate scalar density on P differs from \/y B(W)
[see equation (6.21)] only by the exact form (full divergence for the vector
K*). We will consider \/y B(W) as the Lagrangian density for the gravita-
tional, electromagnetic, and scalar fields. Bergmann®® considers a general
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Lagrangian of this type (see Ref. 50, p. 26, formula {1.1]). Our Lagrangian
has of course the determined functions f, /3, f3, f3. It is easy to see that

o= flp)=p" fs(p)=%, =0 @D

In equation (6.21) we get also a special form of the Lagrangian for the scalar
field p. It is

5(ad)

L
Z(p) = g"1g5,8%p P (7.2)

It vanishes if the skew-symmetric part of the metric is zero. Thus, the scalar
field will propagate if the skew-symmetric part of the metric is not zero.
Let us transform p and g,, in the way suggested in Ref. 50:

p=e " (7.3)

i
Suv ewguv=;guv (7.4)

(conformal transformation of g,,). After simple calculations one obtains

VY BOW)=J=g{R(W)+e > [2(g¥IF,.)> — H™F,,]
+g"g5,80W W ) (7.5)

Thus, we have the Lagrangian density in our theory

L(W,g,,, A, ¥)=J—g ROW)+8ne ¥ Lo+ Locar (¥) (7.6)

where
Lcm=L8ng [2(g¥"F,,)? — H F,] (1.7)
Lecal= g[w]gﬁvg(a&)w,ﬂ\y.a (78)
and
g"=/~gg" (1.9)

This is of course a scalar-tensor theory of gravitation with a nonsymmetric
metric unified with electromagnetism. The scalar field propagates only if the
skew-symmetric part of the metric is not zero. Otherwise, ¥ is not a dynam-
ical field. In the next section we will find an interpretation of this field.
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8. THE VARIATIONAL PRINCIPLE AND FIELD EQUATIONS—
INTERPRETATIONS AND CONCLUSIONS

Let us define the Palatini variational principle on the manifold P
for R(W),

5f R(W)Jyd’°X=0, V<P 8.1
v

where
y=det(y.45)=—p* det(gap) = —gp’
It is easy to see that (8.1) is equivalent to the following:

8 J =g X {ROW)+ e ¥ [2(g¥F,, Y — H*F,,]

U

+gllg; 8@O¥ ¥ 1=0 (8.2)

where U < E. We vary with respect to the independent quantities W, , g4y,
Ay, and . After some calculations we easily get

Rap(W) —58ap ROW) =87K[Top+ Tp(¥) (8.3)
guva'—gévfiuo‘_guél:éo’\/:() (84)
g, = (8.5)

We can rewrite equation (8.5) in the form

V.g#1=0 (8.52)
3u(H*) = 2g""10,(g ¥ IF,,,) — 30, ¥ (H"* — 2g¥(g¥"F,.,))  (8.6)

We can write in place of d,(H*), /g - V, H**, and

Y
ox“ ox*

@ -g"g58“")

i ~(ua vas vy s ( 6‘11
g VR o (8 87 Rl

/g

57 vy g (8.7

J-g
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where

em 1 e %
EB=4-; {g,s8™g VHWHTE—Zg[" ]F‘“’F"”

‘%gaﬁ[HﬂVF#v_Z(g[uvlFﬂV)Z]} (8.83)

is the energy-momentum tensor fot the electromagnetic field in the non-
symmetric Kaluza-Klein theory

scal &Y
Lp(¥) =7~
X [%g(gx)g(ma)(gxﬁgma + gmﬁgxu) (gvugs‘, - 6%)‘{‘,#‘{1,5
~ gun(8 " ga B W )] (8.9)

is the energy-momentum tensor for the scalar field ¥. In the calculations we
used the following formulas for dg,, and §§“%:

6g8v ="8vy8s0 ngy (8. 10)
387 =18 "8 Ve Bov + BV V8urBpy) 58”7 (.11

scal

It is easy to see that the trace of T,5('¥) is not zero,

scal

g Tup(¥) =~ /87(g g5, 8 LW ) #0 (8.12)
We have
H=/-gg'e"Hy,,  Hp,=—Hy (8.13)
and
2558" Hyu+ 8a58" Hp, = 28458 Fpy (8.14)

We can rewrite equation (8.14) in a matrix notation,
g VH+g'g 'H =2g"g"'F (8.14a)

where T means a matrix transposition. Equation (8.14) expresses the rela-
tionship between tensors H,p and F,p.

It is well known from Einstein’s unified field theory that equation (8.4)
has the following solution:

T (4 - a a
r ﬁ}':{ 7}+%Q prt Uy
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where 05, is the torsion of the connection T, {5} is the Christoffel symbol
form for gz, and

U'3.=8""0u1B8Ls1

Now we are able to interpret the quantities in our theory. First of all it is
easy to see that H,z plays the role of the second tensor of the electromagnetic
strength (the so-called induction tensor) and equation (8.14) expresses the
relationship between tensors F,g and H,p.

In the classical electrodynamics of continuous media® or in nonlinear
electrodynamics® it is necessary to define both of these tensors. The first
tensor, Fop, is built from (E, B) and the second, H,z, from (D, H).

If the metric g,z is symmetric, then F,5=H,p. Thus, it is interesting
that the skew-symmetric part of the metric g;, 4 induces some kind of electro-
magnetic polarization tensor of the vacuum.

In the classical electrodynamics of continuous media™"’ and in nonlinear
electrodynamics®” it is possible to define the electromagnetic polarization
tensor of the continuous medium (classical electrodynamics) or the vacuum
(nonlinear electrodynamics) called M,;,

(66)

Haﬂ:: aﬂ“4ﬂ:Map (815)

It is easy to see that
AnMyap=—Kgup (8.16)
[see (6.6)]. Thus, we get a geometrical interpretation of Mg.
@ ap(T) =87 Mo (8.17)

The electromagnetic polarization induced by the skew-symmetric part of the
metric gy,,; is the torsion in the fifth dimension. This is in very good accord-
ance with results from Refs. 16 and 68. The only difference is that in Refs.
16 and 68 the electromagnetic polarization has its origin in external sources
and (8.17) plays the role of the Cartan equation in the Kaluza-Klein theory
with torsion.

But this is not all. The skew-symmetric part of the metric g, also
changes the electromagnetic Lagrangian.

1 14 o
$em=§;[2(g“‘ TF ) = HYFol (8.18)
In (8.18) we have a new term 2(g¥*F,,)* which is an interaction between

the skewon field and the electromagnetic field. This term vanishes if the
metric is symmetric and is always nonnegative.
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- Thus, classical electrodynamics in the nonsymmetric Kaluza-Klein
theory will be different than in general relativity.
The skew-symmetric part of the metric also induces a source for the
electromagnetic field. In equation (8.6) we get a current.

- I v
[ =587 0p(8"“"F,) (8.19)
27
which is conserved automatically modulo equation (8.5)
j%e=0 (8.20)

This current vanishes if the metric is symmetric. This is completely different
from the classical Kaluza—Klein theory.""'® In the classical approach based
on a symmetric metric on space-time one obtains the second Maxwell equa-
tion in the vacuum. There is also an additional current induced by a scalar
field ¥. We have for K

K=e¥ (8.21)

Equation (8.21) expresses the relation between the scalar field ¥ and the
gravitational constant K. Simultaneously we get an interpretation of the
scalar field W. It is connected to the gravitational “‘constant” K, which now
can change in space and time according to equations (8.21) and (8.7). It is
easy to see that if the symmetric part of the metric is zero, K is not a
dynamical field and it is really a constant. In this way the scalar field p is
also a constant. Thus, we get zero for the extra term in equation (5.7). In
this way equation (5.7) becomes the ordinary equation of motion for a
charged test particle in gravitational and electromagnetic fields. It is easy to
see that equation (8.7) is more similar to the Klein-Gordon equation than
to the wave equation: consider the term

6n

el (8.22)
Only if
Lem=0 (8.23)
do we get an analogue of the wave equation. It is equivalent to
28" F, ) =H"F,, (8.24)

Thus, we get the equations for the gravitational field in the tensor-scalar
theory with electromagnetic and scalar sources. Moreover, the tensorial part
of the gravitational potentials is not symmetric. These are equations (8.3)
and (8.5). Equation (8.4) is a compatibility condition from Moffat’s theory
of gravitation.
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Now we turn to the problem of the equivalence principle in our theory.
It is well known®” that many scalar-tensor theories of gravitation do not
satisfy the equivalence principle. They are in contradiction with the universal
free fall of all bodies. This occurs of course iff scalar forces have long range.
In this case the scalar field satisfies the wave equation. But fortunately this
is not true in our case. Equation (8.7) is of the Klein-Gordon type rather
than of the wave type. This suggests that our scalar forces obey Yukawa-
type behavior and not Coulomb behavior. This means that our scalar forces
are of short distance, i.e.,

wlew 450 (8.25)
¥

This means that if r - o0, ¥ - 0 and
K — const (8.26)

Thus, we get the unification of Moffat’s theory of gravitation with electro-
magnetism and scalar theory. This nonsymmetric version of the Jordan-
Thiry theory combines gravitational theory and the electromagnetic Maxwell
theory in a much stronger way than the classical Kaluza-Klein theory and
the classical Jordan-Thiry theory. Simultaneously we get the possibility for
changing the gravitational constant without violation of the equivalence
principle. In our approach there exist “interference effects” between gravita-
tion and electromagnetism which are absent in the classical approaches.

1. A new term in the electromagnetic Lagrangian
1 [nv] Ja 2
4—77,: (g pV)

2. The existence of an electromagnetic polarization of the vacuum M
which has a geometrical interpretation as a torsion in the fifth
dimension

3. An additional term for the Lorentz force term in the equation of
motion for a test particle

9 g u”
g
4. A new energy-momentum tensor T,z for the electromagnetic field
with zero trace.
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5. Sources for the electromagnetic field—conserved current

a_ ) e v 3 v
= g[ ﬂ]ap(g[u ]F”V) —_ 6,;‘P(HB" _zg[Ba] . (g[u ]va))
2z 4r

6. An additional term in the equation of motion for a charged particle

2
(ot
8 \my Jol

2
1 ( 9 ) glroMy
4 My

B

or in terms of ¥

7. Propagation of the scalar uncharged field ¥ (or p) [equation (8.7)]
and a Lagrangian for ¥ [see equation (7.8)] with an interaction
term involving the electromagnetic field

—3¥
8¢ Lem

which plays a role similar to a mass term.

8. An energy-momentum tensor for a scalar field with nonzero trace,
which suggests that this field is massive.

9. An interpretation of the scalar field as a gravitational “constant”

K=

10. Points 7-9 suggest that the scalar force is of short range. Thus, it

~ does not violate the equivalence principle. It allows the gravitational
“constant” to be really constant at long distances, and the addi-
tional component in the equation of motion for a charged test
particle (see point 6) goes to zero.

All of these effects vanish if the skew-symmetric part of the metric is
zero. We then get the classical results.

Let us write in this section a general form of the Lagrangian, coming
back to CGS units. We get

_ 8
Z=R(W)+8n(u A)Ze‘3““zem+—-’rf;—” (gi Lo (‘P)) (8.27)
C ¥4

where

1/2
_ and M=2(GNh) _ 2y

8.28
c? chq Vem ( )
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where [,=(Gy#%/C?)"? is the Planck length and daem=g>/fic is the fine
structure constant.

Let us remark that we have three equivalent forms of the energy-
momentum tensor for an electromagnetic field in our theory.

Let us write them down:

em(l) 1 . .
Taﬁ =:4; {gypg“’g 7Hpa H..— 2g[” ]F#vFaﬂ
— 18aplH" Fuy— 2g"1F,, )1} (8.29)

em(2) 1

Tu"=a {guﬂHﬁvHau —2g(amFaﬁFuv

1
~ 8o [H P H,5— 28" F,p)"1} s Juv (8.30)

Jpv=4Hay Hﬁvg[aﬁ]—4Hay Hregmgﬂvg[gm (831)
em({3)

1 o v
Taﬁzz—{gaﬂHu FM—Zg” Fquaﬂ
7/

—%gaﬂ[HyVFuv*Z(guVFuv)z]} (832)

It is easy to see that

em(1) em(2) em(3)

g T,p=g"" T,s=g" T,p=0 (8.33)

T+5" has been considered in this section an energy-momentum tensor for
the electromagnetic field T in Ref. 41 and T55® in Ref. 31. They are
equivalent modulo equations (6.22)-(6.24). In Refs. 24 and 69 we consider
T53" for a general and Abelian [G=U(1)] gauge field.
Let us consider two 2-forms

H=n*(3H,,0"A0")
and

M=nr*(3M,,0"A0")
One easily writes

H=Q—4rM=Q-}0Q° (8.34)

where 0°=10°,,6" A 0". _
In this way we define the 2-form of induction H and find its geometrical
interpretation in terms of the curvature and the torsion in the fifth dimension,
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as in Ref. 18. Equation (8.14a) can be rewritten in the following form using
three-dimensional vectors and 3 X 3 matrices:
| (aJ+A)-D+V-+H=2AE
(bJ+K)-D-WxH=2pE~2W xB (8.35)
(V-Q)-D=2VE

and
. (K« H-Ax H)+(W-U)®D=2K « F+2WQ®E (8.36)
where
a=(g"'g"us, b=(g'g"") us (8.37)
V=((g"8" ), ¢=1,2,3
W=((g"'g N4, a=1,2,3
U=((g"g Vs), b=1,2,3 (8.38)
Q=((g"'g e, ¢=1,2,3
AT=0(g"g ), ac=1,2,3 (8.39)

K=((g"'egNx), ¢&b=2,3,4

* means matrix multiplication in three-dimensional space,

® means the tensor product of three-dimensional vectors, a dot

(+) means the scalar product in three-dimensional Euclidean space,
AE means the action of a 3 X3 matrix on a three-dimensional vector,

E = (Ez) = (Fas) (8.40)
D =(Dz)=(Hza)
F=(Fs) =& B)=—F" (8.41)

H=(Hzz)=(emsH)=—~H"

x 1is the vector product in a three-dimensional Euclidean space. Here &5
means the Levi-Civita symbol in three-dimensional Euclidean space. One
easily gets that

B = (BE) = (% Esimi F;ﬁﬁ) (842)

and

H = (H;) = (3 £ Hyms) (8.43)
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In this way we lose the covariancy of equation (8.14), but we get the relations
between three-dimensional vectors (E, B) and (D, H) as in an anisotropic
dielectromagnetic medium.

For example, if we demand D=0 (E #0), we get

VxH=24 E (8.35a)
W x H=2W xB—25E
V-E=0
HK+H-A+H)=K+« F+W®E (8.36a)
Thus, VLE and
H=2(K—A4)"' +« (K+ F+ W®E) (8.44)

if det(K—A)+#0.
Using equation (8.35a), one gets

[(K—A)"' +(K+ F+WQ®E)]- V=AE
[(K—A)" % (K+ F+W®E)]* W=2W x B—2bE (8.45)

Thus, equation (8.45) with V_LE should be considered a condition for g, E,

and B for a solution of the field equation with dielectric confinement, i.e.,

for D=0 (no charge distribution in the presence of an electric field).
Moreover, in our theory there is a different tensor H, i.e.,

H" =gPg7H;. (8.46)
Thus, we can connect vectors D and H to this tensor, i.e.,
D=(D)=(H™), a=1,2,3
H=(H)=G&"Hy), §=1,2,3 (8.47)
H=(Hyzz)= (% " H)
In this case we should rewrite equation (8.14a) in terms of H*". We get
8u58ap H" + 8as8” 8,8 H" = 28458 Fpy (8.48)
We also find
(2244 + 8458”7 (87481 — Bas8,)1 D
+ 8ar(@ina — 8asE '8y ) H = —28458" E: (8.49)
(844855 — Bas B1vi + 8458"" (7485 — &r854) 1D
+ (@ ar + 84388y o) Hone = 28458" Fro— 28as8” ) Es  (8.50)
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(874854 — B4a(8am + 868’ 8 ym) + 858" 8 48al D

+ (8rular + Bunasl’ " €y7) Hisr = —28468" Ez (8.51)
(87580 — Ba5ar T+ Bas8” Byalsr— Basl’ 8yr8ba) Dy

+ (@b Rar + 8as®” By ) Hinr= 28268 *E5+ 280s8” Fr:  (8.52)

Supposing D;=0 (D=0), one gets

o @na — BasQ® Byw) Hirr= —28458° E; (8.53)
(5 8ar + 845" 8y 8w) Hoie= 28458 Fp: — 2aF5 (8.54)
(@it Ganas " 8ye) Hine = — 2858 Ez (8.55)
(@r8ar+ BasE” 8+ 86w) Hinr = 28458 * E5 + 28a58° Fis (8.56)

However, we should mention that a separation into space and time com-
ponents of 8.4, F,v, Hy,,, and H*" is possible only if we deal with the
stationary case. We suppose this in order to have a physical interpretation
of the condition D=0. Otherwise our considerations have a purely formal
character.

A stationary space-time determines a three-dimensional manifold X,
defined by the smooth map ®: E — X;, where ®(x) denotes the trajectory
of the timelike Killing vector 7. The elements of X; are orbits of the one-
dimensional group of motions generated by 7. The 3-space X, is called the
quotient space E/G,. There is a one-to-one correspondence between tensor
fields on X; and tensors on E, T satisfying #*7,"=,T,/=%,T, =0,
where 7], =g’ . In our case we have on X; the following tensors:

huv =g(yv)+ (_gaﬂ ﬁaﬁﬂ)]/zﬁﬂﬁv
and appropriate tensors built from g.p, Fuv, Huv, H"Y, etc. (n=0/0x4).
The action of the group G, can be lifted to the electromagnetic bundle P
and we get £ ,0=2%,y=0, where n=I1*7. This corresponds to .¥,Q=
£,&=0 and consequently ¥, H=%,M=0. In the case of a static field
configuration there is a natural way of introducing subspaces E; (orthogonal
to the Killing trajectories).

Equations (8.52)-(8.55) should be considered consistency conditions of
D=0. Thus, we can treat them as equations not only for H,;, but also for
244, Era, S, and g; under the stationarity condition (the same condition
for Hyss, E:, Fs;). Thus, the dielectric confinement solution of the field
equations can be derived from the second possibility, i.e., D=0 obtained
from H"”,
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9. EQUATION OF MOTION FOR A TEST PARTICLE.
ADDITIONAL CONCLUSIONS

Let us come back to the (5.7) and consider it for p=1. Due to the
compatibility condition (4.7), we have"®"" the first integral of motion for
equation (5.7),

y(u(t), u(t))=yamu” (u’(t)=const .1
or
gapyt “(OUP () — (u®)* =const (9.1a)
However, due to equation (5.6) we have
u’ = const’ (9.2)
Thus, we get
7 (hor(u(?)), hor(u(?))) = geapyu “(1)u’(£) = const” 9.3)

We suppose const” >0, i.e., we do not consider spacelike world-lines on E.
Let us rewrite equation (5.7) for p=1 in the following form:

dx? dx?
2%+ ao®’F. (___)_ lavlgy <_>=0 94
mod” +qg " Fyp\ — |48 " (94)
where
4 oy (9.42)
My
and
Du® D (dx® '
aa=_”_=_<dx ) 9.5)
dt  dt\ dt

is the covariant four-acceleration of a test particle. Equations (9.4) and
(9.4a) are defined on an electromagnetic bundle P. Moreover, we can get
them on E by taking any local section of P. For F,,, H,,, and p well defined
on E (not dependent on a section), we get the same equations. Let us consider
an initial Cauchy problem for (9.4) such that

x(to) =x¢
d o

X ()= ul (9.6)
dt

gaﬂu(?u(?: 1
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i.e., we consider timelike curves on E. They have a natural interpretation as

world-lines of masswe test particles (mo;éO) In the case of null world-lines

one has g g o uf =0 (my=0) and u° does not have a meaning as (q/mo).
Due to equation (9.3) we have for every 1> ¢,

dx® _dx*?
apgs— () — (=1 9.7
gﬁdt()dt() 0.7

Now we will find an interpretation of the additional term for the Lorentz
force in equation (9.4), i.e.,
dx®

—-qg"“"'H 9.8
q8 B, dt (9.8)

To do this, let us consider equation (9.4) without this term, i.e.,

a ay dx g
mopd +qg Fp—dt-—o (99)

This equation is a simple generalization of the equation for a charged point
particle in general relativity to the nonsymmetric case. Now g°” is not
symmetric and the covariant four-acceleration is defined in terms of the
connection @“g on E. This connection is of course compatible with the
nonsymmetric metric g,5. One easily checks that

d dx® dx dx
u —|=-2u’g,se’"F ( )( ) 0 9.10
dz(g”” dt dt) ~2ugas Foa\ o\ ) ©.10)

Thus, in general equation (9.9) does not have the first integral of motion
(9.3). This means that we are unable in general to preserve the initial normal-
ization for the four-velocity of a test particle. If we want to have the normal-
ization (9.7), we must add to equation (9.9) the auxiliary condition

D(U*) =gupi®u’ —1=0 9.1

The auxiliary condition (9.11) is a nonholonomic constraint. This constraint
is nonintegrable and nonlinear (quadratic in velocities). According to the
general theory of mechanical systems with constraints, we know that in such
systems we have the so-called reaction forces of constraints. Thus, we should
write (9.9) in the following form:

moa® = —(2u’mo)g* F, ,u” + Q° 9.12)
D) =g pu"u” —1=0 (9.13)

0 is a reaction force of the constraint (9.13). The force @ must be such
that (9.13) is automatically satisfied during a motion. Let us find this force.
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In order to do this, we multiply both sides of (9.12) by ge.s)u” and integrate
from 1, to t. We get

mg Mo
= O =— (Zapu’u’—1
5 (%) 5 (8apu )

= J‘ (Baptt® Q" — 2moi’8apy8” " Fypu’uf) dt (9.14)

o

If (9.13) is satisfied, we get
t
f (8apy? Q° —~ 2mott’g(apy Fy o8 u"u’) dt =0 (9.15)
fo

Moreover, equation (9.15) is satisfied for every ¢. Thus, we get
Lapt? Q% — 2mo’g a8 F, ot =0 (9.16)
It is easy to see that equation (9.16) has a solution
Q° =2mp’g""F, ,u’ (9.17)
If we put (9.17) into (9.12), we get
moa® =0 | (9.18)

This solution has simple physical interpretation. Equation (9.18) is an equa-
tion of motion for an uncharged test particle. There is no Lorentz force. It
corresponds to a choice #°=0 or equivalently g=0. Let us come back to
equation (9.16) and transform it using the condition (4.9). We get

(2apt? Q%+ 8pattP Q% + mott* (85587 Hyo + 8% Hp, Ju'uf) =0 (9.19)

Equation (9.19) has a solution

0° = 2mou’g" " H ,pu® = qg" " H  gu” (9.20)

Equation (9.19) gives us an interpretation for an additional term for the
Lorentz force in equation (9.4). This additional term is a reaction force of
the nonintegrable, nonholonomic, nonlinear constraints (9.11).

It is easy to see that our constraints are nonideal, for Q is not propor-
tional to a gradient of @. The constraints seem to be similar to the so-called
servo-constraints.

Let us consider a null world-line, i.e.,

gapu? =0 (9.21)



664 Kalinowski

In this case m,=0 and we have g=0. Moreover, u° could be nonzero. For
u’=0 we get a”=0, i.e., the usual photon trajectory in NGT. If u°#0, we
get the equation of a “charged photon” where u° is a measure of its coupling
to the electromagnetic field.

Let us pass to the field H,z. This field plays the role of the second
tensor of the electromagnetic strength. However, we have to do with only
one electromagnetic field. Equation (4.9) expresses the relationship between
Fap and H,p. This is a linear equation for H,z. The difference between H,g
and F,p appears due to the skew-symmetric part of the metric g,5. If gi05 =
0, we have H,5=F,5. The second pair of Maxwell equations (8.6) is the
same as in nonlinear electrodynamics or in the classical electrodynamics of
continuous media. In (8.6) we have a source, a conserved current. This
current depends on the skew-symmetric part of the metric. In the nonsym-
metric theory of gravitation the fermion current is the source for the differ-
ential equation for gg,,;. In this way the fermion current becomes the source
of the difference between H,s and F,p. In the nonsymmetric theory of
gravitation there is no Lorentz-like force term connected with a fermion
charge (see Refs. 34, 63, 64).

This is a very important property of this theory. Due to this, the weak
equivalence principle is satisfied, i.e., the universal falling of all uncharged
bodies. This statement is not true for charged bodies. We have the Lorentz
force term. In the nonsymmetric Kaluza-Klein theory there appears an
additional term involving the tensor H,z and the skew-symmetric part of
the metric g®”). Due to this term, the fermion charge has an influence on
the motion of the test particle. It is of course an influence via a gravitational
and an electromagnetic field (no additional Lorentz force with the fermion
charge of a particle). But it is an influence. For example, the exact static,
spherically symmetric solution of Moffat’s theory has two sources: a mass
point m and a point fermion charge /%.G4%%9

Let us pass to equation (4.9). We are able to solve this equation by
using iterative methods for the weak gravitational field. In order to do this,
we write (4.9) in the form

Hg,= (gasg‘syFﬂy - g(&plgysHya - g[aé]gayHﬂy) (9.22)
and define the following transformation:
(n+1) (n)
Hﬁu:MuVBaH;m (9.23)
such that
©)
Hﬁa=Fﬂa (924)

(n+1) o {n

Hpo=(8a58" Fp, ~8isp8" Hyo—8asi8’"Hp,),  1n=0,1,2,... (9.242)
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One easily gets that

{(n+1)

()]
Hﬁa___..(Mn+l)yvﬁaHuv=(Mn+l)yvpaFuV (925)

The index (n+1) means the (n+1) iteration of the transformation
(9.23). We get

(n+1) (m m (-1

Hpo—Hpa=~Ig15p8"° (Hyu— H,o) +grasig’ (H,By pr)] (9.26)
Now let us suppose that the field g,z is weak. This means that

8ap= Napthap (9.27a)
gl =n""+p"* (9.27b)
Lhapl, |17 | <a«1 (9.28)

where 71,4 i1s the Minkowski tensor. In this case one gets
g’ ="’ — 0" n"%h,, (9.29)
The skew-symmetric tensors
Lg,=—L,g 9.30)

form a natural linear six-dimensional vector space. Let us define the follow-
ing norm in this space:

IILH‘ max. |Ll3v| (9:31)

Bv=12

Thus, our space becomes a Banach space. For sufficiently small ¢ one finds
(n+1t) (m [t0] n+1)

I H—H|<p(@)IH- H| (9:32)

where 0 < B(a)=9%a <1; if 0<a<1/96, equation (9.32) means that the
transformation (9.23) is a contraction. According to the Banach theorem,
this transformation has a fix point

() ()

Hﬂa=MuVﬁaH;lv (933)
such that

() on ()
Hpo=lim Hgo=lim(M™)" 5o Fuo = M*"" o5 Fyy (9.34)
The limit (9.34) is understood in the sense of the norm (9.31) and

()
M*" g, = lim (M"™)" 5 (9.35)

H—r 00
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The limit (9.35) is understood in the sense of the usual linear operator
topology generated by the topology of a Banach space. According to the
Banach theorem, there is one and only one fix point of the transformation
(9.23) (in the weak-field approximation). Thus, we get that
{»)

HﬂazMuvﬂaFuv (936)
Equation (9.36) is the solution of equation (4.9). In this case the additional
term for the Lorentz force in equation (9.4) takes the form

(o)
_qg[aﬂMuvﬂiuﬁFuv (9.37)

It is purely described by the tensor F,, and the metric tensor g,5. We have
the same for the reaction force of constraints

(o)
Q% =—~qg"" " M"" , " F,, (9.38)

For nonholonomic (nonintegrable) constraints we have the following
statement. A variational problem with differential (nonintegrable, nonholo-
nomic) constraints cannot be reduced to a form where the variation of a
certain quantity (an action) is put equal to zero. This is true in the much
simpler case of linear nonholonomic constraints.” Thus, unfortunately, we
cannot formulate a principle of action for equation (9.4). Moreover, we are
still able to interpret the additional term in the Lorentz force as a reaction
force of the nonholonomic constraints (9.11). However, we can try to formu-
late a local Gausslike principle in order to derive equation (9.4). Let us
consider a local Gausslike principle for equation (9.4) in the following form:

8§2*=0

modulo constraints (9.11), where

y 1
z2="0 g(aﬂ)er(aY_.F_>fﬂu<au _I_‘l)
2 my My
fay is defined as follows: £,5/ ?s =g H, s =5, f°s=1""8ws), and f**[,, =
0"y, det(F,,) #0.

Thus, f exists if the matrix #°; is invertible, symmetric, and positive
definite. It seems that only in this case can we formulate a Gausslike principle
for equation (9.4).

Thus, we get

g P, (mpa” — F") f3,8a" =0

We recall that for the Gauss principle we are taking the variation with respect
to the accelerations only. The acceleration a® is a covariant acceleration with
respect to the connection I'?g, on E.
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Differentiating equation (9.11) with respect to ¢, one gets

d D D
0=2owy=2ow)= L+ 2 Zg
o ©") = (u) Zp)

oo
=—a—; a®+ Dy® =2gpula® + D,®
u

Thus, the allowed variations of the accelerations satisfy the condition
oD
e 0a’= Zg(amu p5a" =0
du

From the above equations we get
g(aﬂ)far(moay —F")fpt 2"g(vti)uﬂ =0

where r is a Lagrange multiplier. Using the definition of f,5, we come to
equation (9.4) and r=—¢q/2. The force Q" can be expressed in terms of the
ideal reaction force R,, i.e.,

Q°=pP*R,, p#0
where
Pav = g[aylHyv

Note that the conditions for the application of a Gausslike principle
are as follows:

L. det[(gagggu - gCag‘lc)H;x&] #0.

2. The matrix h,s = (gqr8"" — gr28"°) H,s is positively defined and sym-
metric. Let us note the following facts. We formulate a local Gausslike
principle for the equation of motion for a test particle in nonsymmetric
Kaluza-Klein theory (NKKT). Moreover, the original equation has been
derived from a Galilei like principle in NKKT. According to this principle,
test particles move along the simplest lines in NKKT (an extended Galilei-
like principle states this). Moreover, we can get the equation in a different
way, formulating a local Gausslike principle. This principle is generally co-
variant and the acceleration 2 is a covariant four-acceleration with respect
to the nonsymmetric connection on E. The constraints are also covariant
and depend explicitly on t~—a parameter along the particle trajectory. In this
way we get the interpretation of an additional term for a Lorentzlike force
as a nonideal reaction force (it is not proportional to the gradient to the
hypersurface of constraints). The application of a Gausslike principle is
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possible under some assumptions concerning g, and F,,,. Moreover, they
can be satisfied and we get a proper equation (i.e., those obtained from
a Galileilike principle in NKKT). The above Gausslike principle can be
considered a minimum (extremum) principle for a quadratic function of
accelerations modulo constraints. For F* we have

Fo=qg*PFgu

During the motion Z? is minimalized (extremalized) modulo the nonlinear
nonholonomic constraints (9.7). The constraints are nonideal and the force
Q” is a nonideal reaction force.

From the geometrical point of view (the force Q“ is absorbed by the
geometry) it seems that only the metric geometry or the Einstein geometry
defined on the five-dimensional Kaluza-Klein manifold lead to the condition
(9.1). The geometry defined by the metric §=g(,50° ® §°, the 2-form g=
2150 A 07, and the connection &°; satisfying the condition (4.7) we call
the Einstein geometry. If we want to get conditions (9.2) and (9.3), it seems
that we have only three possibilities:

1. Riemannian geometry (classical Kaluza-Klein theory).

2. A generalization of the Einstein-Cartan theory and the Kaluza-
Klein theory.!%%

3. Einstein geometry on the electromagnetic bundle manifold, i.e., the
theory described in Section 3.

The first two geometries are metric. The first one is only a model of a
unification of electromagnetic and gravitational fields. This unification is too
perfect. We do not get any “interference effects” between gravitational and
electromagnetic fields. It seems that it is only a five-dimensional representa-
tion of general relativity and Maxwell’s theory in Riemannian space-time.
The second possibility, due to the Cartan equations on the space-time and
in the fifth dimension, offers some interference effects: an additional current
connected to spin sources. W. Israel’s energy-momentum tensor as the tensor
of an energy-momentum for the electromagnetic field, and a contact inter-
action term of electromagnetic polarization in the total energy-momentum
tensor. Unfortunately, an additional geometric degree of freedom, torsion,
is connected algebraically with external sources, spin and the electromagnetic
polarization of matter. Thus, this torsion does not propagate. The third
possibility seems to be more interesting. There are “interference effects”
between gravitational and electromagnetic fields. Torsion propagates. It is
interesting to notice that despite completely different geometries in the
second and third possibilities, we get the same equation connecting the
clectromagnetic polarization existing in the theory to a torsion in the fifth
dimension.
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Let us pass finally to the following conclusion. The nonsymmetric
Kaluza-Klein theory offers us a unified theory of the gravitational and
electromagnetic fields. In this theory Einstein’s unified field theory (real
version) is treated as a theory of the pure gravitational field, according to
Moffat’s approach.®***" However, we can still have the old interpretation
of Einstein’s unified theory if we follow Klotz.”> Due to the metric hypo-
thesis, he interprets Einstein’s theory (weak system of field equations) as a
unified field theory of macroscopic gravitational and electromagnetic fields.
The metric hypothesis means that

Iy = { ﬁl;} (9.39)
P

where p is a imetric tensor, which in general has nothing to do with g.p.
Using equation (9.39), Klotz is able to get a Coulomb solution and Lorentz
force term, which was impossible to get in previous approaches. He interprets
Ryy(T) as F,,—the strength of the electromagnetic field. In the linear
approximation this is coherent with the previous interpretation,

Fuv~ 8" Buuvriap, (9.40)

where the dot means a covariant derivative with respect to ["%4,,.
However, the condition (9.39) seems to be very restrictive and some
solutions of Einstein’s weak system of field equations do not satisfy
equation (9.39).

The pure gravitational interpretation proposed by Moffat seems to be
more fundamental. The nonsymmetric Kaluza-Klein theory offers a possible
reinterpretation of NGT. According to equation (4.9), the tensor H,g is
expressible by F,p and g,s. The equation is linear with respect to H,z and
can be solved. In Section 8 we define the tensor M,z. This tensor is skew-
symmetric and if g5 =0, M, is zero, too. M,z has the physical interpreta-
tion as the polarization tensor. Simultaneously we get the geometrical inter-
pretation of M, as the torsion in the fifth dimension (Qz5=87M,z). Thus,
we come to the conclusion that it would be possible to reinterpret the
nonsymmetric theory of gravitation as a theory with nonzero torsion in
the fifth dimension as a fundamental quantity. In this way one rewrites
equation (4.9)

I
g552" " Mya+ 8us8’ Mg, = an (85p8" Fra—8as8"Fpy) (941
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Using matrix notation, we can rewrite equation (9.41) in the following form:
- - 1 - _

g Y M+g'g™'M T=ZZ g™ )Y F—gTg 'F] (9.412)

where T means matrix transposition,

We can treat equation (9.41) as an algebraic equation for g, and M,
as a known quantity. We have the same number of degrees of freedom for
Mg and g, . Equation (9.41) is nonlinear with respect to g;, and more
difficult to solve. In this way we can reinterpret the full theory as a theory
with torsion in the fifth dimension. Thus, our theory has many similarities
with previous approaches, i.e., the Kaluza-Klein theory with torsion.!%®

Let us consider equation (9.41) in more detail, trying to solve it using
iterative methods (i.e., generalized Newton-Kantorowicz method). In order
to do this, we consider a 16-dimensional Banach space of 4 X 4 matrices
(g.5) =g with a natural norm of operators induced by a Euclidean norm in
four-dimensional Banach space. Let us denote it by & =(X, | o || ). We define
a nonlinear operator acting in X for such g=(g,p) that det(g,s)#0,

T: X>X (9.42)
We have D(T) = {g.p, det(g,p) #0} and it is open in Z,

1 1
T(gpv/))aﬂ = g&ﬂgys(Mya - Fya) + ga5g67<Mﬂy +— Fﬁy) (943)
4 47

One easily notices that T(xg)= T(g) for ge D(T), x #0. Thus, we can con-
sider an equivalence g, ~g, if g,=xKg,.

Let us denote an equivalence class of g by [g]. One easily notices that
there is §e[g] such that ||§| =1. Thus, we can consider 7 in D(T) n S(1),
where S(1)={gus, llgl =1}.

The solution of equation (9.43) is given by

1(g0)=0 9.44)

It is easy to see that if 7(gy)=0, then T(xg,) =0 as well for k0. Let us
notice that the operator 7'is continuous in Z and it possesses Frechet deriva-
tives of any order at any point of D(T"). They are bounded linear (multi-
linear) operators in Z. Let us find the first and second derivatives of T at
geD(T)cX. We get

v v Vol 1
((dT) Ig)u ap = (5pgw - g&;sgy g‘ 5)(Mya —‘Z; Fya)

v v 1
+ (65g y_gaagﬁ guy)(MBy'*‘Z; pr) (945)
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and
((d°T) )" ap
= (gwgwgpvgﬂﬁ + gaﬁgrvgu wgp5 - éb’grwgp/x _ 5z;g)'vgvp)

1
(oo
+(gas’ V88" +8asg’ g L — 5hg VR — 558"
1
X (M,;a - Fﬂ,,> (9.46)
Az
One easily finds

Nar)N<2lg ™" 11 +1g) g™ " )(nMn 4] ”) 9.47)

and

@) | N <alg™ 171 + gl g~ )(nMn 4 “) (9.48)

where ||g™'|| is the norm of the matrix g*#, | M| the norm of Mz, ||F|
the norm of F,;, and |g| the norm of g,. Here lI-ll is the operator
norm induced by |- || in 4. One easily gets that d7Tj.,=(1/x)dT,, and
& Tixg=(1/K2)d"T,,.

(d’T)|, is continuous (of course) with respect to g in D(T). Let us
consider hye D(T') such that (dT)j,, is invertible at 4. This means that
«dT) ) ' =A40eB(x, x) (it is bounded, of course). One easily gets

()|, N
|det((d(T) la,) |
2'5Hho A+ ol Bs ' 1)) M) + || Fll /4m)"

Al <

(9.49)
1 det((A(T) ) |
From (9.49) and (9.48) one finds
o1y M
1N el lg)? ) lhol* \°
2‘7( M ) <1+ )h" 5(1+—-———) 9.50
<2UMI+ ) Tae@i\ Taee )\ Taaim) O

X |det((d(T) f) | ™" - [det(ho)| ™"
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We use for ||g~"|| the following inequality:

Ly lel?
9.51x
C ey (9.51%)
Let us calculate || AoT(ho)]|. We find
14T} <NAoll - 1 T(ho)]
S(2(|1Mu + ||Fu/4n)>‘6 ol ®(L+ gl /Idet))” _ - o 1
| det(ho)| |det(d(T) )|

Let us consider a ball K(ho,v), v<1/llhe 'll, K(ho,r)=D(T), and
geK(hy, ). We define the function d(r, ),

d(r, ho)‘“ min _[{det(gqs)] ' (9:52)

K(ho.r)

We easily find for geK(hy, r)
lAo(a>T) |,

als
4z |A|

(n holl e ”> ( (] +|h|||hol|))
a |Af*

-1
[lhl“d(”fi‘:‘l’ 0) - D(ho)] =B (9.53)
for geK(h, ), where h=det(ho) and D(ho) =|det(dT)|s,.
Let us find the product a - 8. We get
32
+
o 2<2(||M|| |h:|F||/4n>

Mo+ Lol /1D (koll® /11 + ol )T AL+ (ol P/ 11+ o))
D*(ho)d(llholl*| b, ho)

(9.54)

Let us define the following sequence:

0
e =h (9.55a)

n+1)

¢ =g~ ((@T)| )" T(2) (9.55b)
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If this sequence converges, the limit

satisfies equation (9.44), i.e.,

7(2)=0 (9.56)
The sufficient condition for the convergence of (9.552)-(9.55b) is

¢ —2ap)"”
B

In this case the sequence (9.55a)—(9.55b) converges to the solution of equa-
tion (9.44). One gets

and

[ SIS

ap<

1
B2

This is the Kantorowicz method. Thus, the method converges quickly. Using
the method, we find

2ap)” (9.57)

() {m
lg—gll<

Bur( My (%), Fap(x)) = () (9.58)

and this is a nonsymmetric metric induced by the electromagnetic field and
the polarization tensor M,,(x) equal to the torsion in the fifth dimension.
The most important fact is that we get a nonzero skewon field

Hyp o) = 8 (M (%), Fug()) (9.59)

which can be substituted into the field equations for gravitational and
electromagnetic fields together with the symmetric part of the metric

guv(X) = 8un(x) + hy(x) (9.60)

We can reconsider all the formulas presented here in a little different
formalism, introducing ordinary vector and matrix notation in 16-dimen-
sional linear space. This means that for any pair of four-dimensional indices
we introduce one 16-dimensional index, 1.e.,

a=(u—1)+v (9.61)
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It is easy to check that (9.61) is unambiguous. One has
Taﬂ «> Ta
8ap > Xa (9.62)

DTop , OTa

= A
8g.y  6X,

This formalism. can help us in some practical calculations.
Finally, let us notice that we can consider a simpler method, i.e., a
different sequence g™
)

g'=ho (9.63a)

n+1) (n)

¢ =g —((dT) ) ' T(&) (9.63b)

This sequence converges to the solution of equation (9.41)
{0}
I(g')=0

However, the convergence is slower.

Equation (9.41) can have more than one solution in D(T)cX.

We do not mean here solutions obtained from gq [T(go) = 0] in a trivial
way by multiplying by a nonzero factor «#0, ie., xgo. We mean here
solutions which belong to different equivalence classes, i.e., go and g,, such
that [go] #[go]. Finally, let us notice that because of T(xg)=T(g), we can
always consider a weak-field approximation for g,, even if g is not small.
This is because if 7(go) =0, then T(xgo) =0 such that

Kgo=n-+h (9.64)

where 7 is a Minkowski tensor and |||« 1.

10. MATERIAL SOURCES. PALATINI VARIATIONAL PRINCIPLE
AND FIELD EQUATIONS

In this section we consider material sources in the nonsymmetric
Kaluza-Klein theory, i.e., an energy-momentum tensor of external sources,
a fermion current, an electric current, and a spin-density tensor of external
sources. We will deal with the case p=1.

We introduce material sources and find equations for gravitational and
electromagnetic fields in the presence of matter with nonzero fermion current
and nonzero electric current. We define a new geometrical degree of freedom
(a generalized contortion tensor) in a similar way as in the Einstein-Cartan



Nonsymmetric Kaluza—Klein Theory in EM Case 675

extension of Moffat’s theory (Einstein-Cartan-Moffat theory™). Simul-
taneously we introduce spin sources. We find equations for the gravitational
and electromagnetic fields and the Cartan equation in this case.

In Section 4 we introduced two connections on P, o“z and W"y (we
change for convenience the notations w”5, @"5 and Wy, WAB). Now the
connection @”5 does not satisfy the compatibility condition for y .5, but a
different connection A”z=A"5.0¢ satisfies this condition:

D~7’A+B~=ﬁ7/AB_yADQDBC(K)BC:O (10.1)
EsA5=0 (10.2)

where D is the exterior covariant derivative with respect to the connection
Az and O%sc(A) is the tensor of torsion for the connection A”5. One easily
finds

AA =[n*(xaﬁ)+gyaH7p05 IH:BVGY] (10‘3)

g (H,p+2F5,)0" | 0
where we have for A%,
Zuvio~ 8ov N o~ BupA 6, =0 (10.4)
For W*5 we have, in a similar manner as in Section 4,
Ws=a"5—30 aW (10.5)
Hg,=—H,5 is a tensor on E and satisfies the following condition:
Zop8" Hyo+ 058" Hp, = 28458 Fpy (10.6)
For the connection &"5 we have the following:

Wy _[n*(m"mg”’mws l Hﬁ-,95]
gP(H,5+2F;,)0° | 0

B= (10.7)
Thus, we have on P all five-dimensional analogues of the quantities from
Moffat’s theory of gravitation,®*%% je., W7, &"5, A5, and Yan-

In Section 4 we calculate the Moffat-Ricci curvature scalar for W75,

ROW)=y"*(R 4nc( W)"'%RCCAB( w)) (10.8)

where R“zco(W) is the tensor of curvature for the connection W, and
we get

IZ'GN

R(W)=R(W) +8—T— {8—]7; [z(g[””F,,v)z—-H““F,m]} (10.9)
C
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In (10.9) we come back to a normal gystem of physical units and in place
of A=2, we put A=2/s/qem. Here R(W) is the Moffat-Ricci curvature

scalar for the connection W?,,%*% and
R=g*’(R"ap(W)+3R"yap (W)) (10.10)
=R(D) +3g"" W)

where ﬁ”py,;(ﬁ/) is the tensor of curvature for the connection l;l:/“ﬁ,
I'leulil] = 3( ﬁ/a,li - ﬁ/ﬂ,a)
and
R = ap (R ap (D) + 4R y0p(D))

is the Moffat-Ricci curvature scalar for the connection &” [R“g,5(T) is the
curvature tensor for the connection &“].

Let us introduce material sources: a tensor of energy-momentum
7", a fermion current $¥, an electric current j*, and a phenomenological
Lagrangian of material sources: ;

2
- 4
Lm=_8”f”’ uvr,,v+8-”i WS +-2j4 A, (10.11)
c 3 c ™
4 6LI?1
Tuv="— ¢ OLm
87[GN 5guv
sh=_3 . SLn (10.12)
8ra SW,
ju=i5_L'_n
~  4m 6A,

and A, is the four-potential of the electromagnetic field. We assume that L,,
is gauge invariant. This means that j* is conserved,

3. j"=0 (10.13)

Let us recall some properties of the fermion current introduced by
Moffat. Fermion current (fermion charge) plays the role of the second gravi-
tational charge in NGT. This quantity has an influence on the geometry of
space-time and it is conserved. In the nonsymmetric theory of gravitation,
the fermion current is introduced in a phenomenological way:

§”=Zf,2p,-y“
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where f; is the coupling constant of the ith fermion (with dimension of
length) and p; the density of the ith fermion.
We have

F=12=J‘~54 d’x=Y [iN;
and
—=—= (F is the fermion number)

where N;= | piu*\/—g d’x denotes the number of the ith fermion.

In (10.11) we introduce a phenomenological Lagrangian with a term
(87d’/3)W,8*, where a” is a universal coupling constant for a fermion. This
constant is equal to one of the f7 or a combination of them such that

In the case of only one kind of fermion we have a®=f7. Thus, we can write
this term as

Let us define the Palatini variational principle on the manifold P for the
density [\/y ROW)+ L,,]

5J V7 ROW)+L,]d°x=0, V<P (10.14)

where y =det(y 15) =~ det(g.p) = — g. We vary with respect to the independ-
ent quantities g,5, W%, , and A4,. After simple calculations we get

~ =~ ~ e 8xG o
Rap(W) = 38apR(W) =  (Tap* Tup) (10.15)
g, =4na’s* (10.16)
Buvio ™ gpv/_\ppcr - gup/—\pav =0 (10. 1 7)

4
Bl =7’r [ 1“+4azc§'”(g[”"1Fﬂ‘,)+—2—C’—r " 3p(gF, )] (10.18)
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where A”, is the connection from Moffat’s theory of gravitation®® and

~

Ay =T +D?,0(S) (10.19)

where

Ard®
3 SP(8uo8pv — BupBov+ uvBiom) (10.20)

gvapua+ gppro'v=

Equations (10.15) and (10.16) are equations for the gravitational field in the
presence of material and electromagnetic sources.

T3 is the energy-momentum tensor for the electromagnetic field. Equa-
tion (10.17) is a compatability condition for the metric on space-time and it
is usually satisfied in Moffat’s theory of gravitation® if the fermion current
is not zero. Equation (10.18) plays the role of the second Maxwell equation.
Now we have on the right-hand side of (10.18) a sum of three currents:
7% (c/2m)g""P'op(g* IF,,), and 47a’S*(g"*PF,,,). The first is the current of
external sources, the second is that known from the nonsymmetric Kaluza-
Klein theory (see Section 9), and the third is induced by the fermion current.
The total electric current

=i+ g 0@ ) HArdS @ E) (1021

is conserved,

92 j*=0 (10.22)

Let us define the tensor of the electromagnetic polarization Mg,

4
Haﬂ= a[i—iMaB (1023)
C
It is easy to see that
5 £, 5 ~ 8
Qap(1)= Q@ ap(A)=— Moy (10.24)

C

where Q°,5(T") is the tensor of torsion in the fifth dimension for the
connection &7 and Q°,5(A) is the tensor of torsion in the fifth dimension
for the connection A”5. For the connection A”5 we have the compatibility
condition (10.2). Thus, we get a compatibility condition for A?5 and an
interpretation of the electromagnetic polarization as the torsion in the fifth
dimension for the connection A%y. If §2 =0, we get &"z=A"5.
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11. SPIN SOURCES

Let us introduce spin sources into the phenomenological Lagrangian
(10.11). To do this, we define on E (as in Ref. 74) two connections Wand I':

W, =W, +K%, (11.1)
[, =T%,+x%, (11.2)

where x“g, is a tensor field such as
K%pe =0, kK%, =—K%p (11.3)

k%g, plays the role of the generalized contortion tensor from Einstein-
Cartan theory.
It is easy to see that

W =Th, =386, W, (11.4)

where

We have
gDy = 0ha(@) =0 (11.5)

where_ Ql,,v(f’) is the tensor of torsion for the connection 1—"1,,‘, and
0%,.(') is the tensor of torsion for the connection I' * v (See Ref. 75 for
more details.)

Let us define connections W5 and ®”5 on P such that

Ws=w"g—565W (11.6)
4 _[(r(@°p)+ g7 H,50° | Hp, 0"
s=\"p . (11.7)
g (117/3+2Fﬁ7)9 ] 0

and
We,=W, 0", 6°=T%,0, W=W,0" (11.8)
We define also the third connection

7 o ra 5 714
AAB=<n(ﬂ p)+8"" Hyp0 alm) (11.9)
g7 (H,p+265,)0" | 0

where Q%,=0%5,07 is a connection on space-time E such that

8uv.o— Bov Qo — Bupor =0 (11.10)
It is easy to see that Ay satisfies the compatibility condition (10.2). Using
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formulas from Sections 4-9 and Ref. 34, one easily finds the Moffat-Ricci
curvature scalar for the connection W*5:

R(W)=R(W)+ ”G”

{ [2(g"*"'F,,) —H"“FW]}

=R(f)+guaKﬁ u+a—;ﬁ_g ‘K yaKyuﬂ

SrtG
+ 1g[l1a]VV[" a]+ N

{ 2(g"1F,.)*— H““FH,,]} (11.11)

where R(W)_ i3 the Moffat-Ricci curvature scalar for the connection
W*sy, and R(T') is the Moffat-Ricci curvature scalar for the connection
I'“g,. Let us define the Lagrangian for the material sources such that

8
L= L+~ ”G” W, S (11.12)

[see (10.11)], where we put in place of Wu a vector W, which is really equal
to W,. We have (10.12) for L;, and

STFGN 5L,'n

Sot'= S == S 1113
S & W, S (11.13)
for ¥ we have
g =27Gn Ol (11.14)
¢ 5w,

Let us define the Palatini variational principle on the manifold P:
6J Li,+Jy ROW)] d’x=0, VeP (11.15)
Vv

We vary with respect to the independent quantities g,,, W?%,,, and 4,.
After some calculations we get

R, (W)~ 2g,,VR(W)— (T,,V+ T,.) (11.16)

g[“”,v=4n<a25”~g§ svﬂ“)=4nazz<” (11.17)
o 4

— ZP — AT
guv,a gva v g/.lpA ov

872G
= (gpvrc",,a + 8K oy + —”63—” gpvg,,ySop") (11.18)
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4
=" ([ AR @ E T+ S E g ) (119

To be in line with the usual interpretation of the Moffat compatibility condi-
tion, we suppose that

=~ 3

uvie ™ ngAp;lo' - gupApow =0 (1 120)
and we get
872G
ngKza+guprav=—(_?ﬂ) gpvg”ySo-py (]1.21)

i.e., a generalization of the Cartan equation from the Einstein-Cartan-
Moffat theory."¥

Equations (11.17) and (11.19) differ from the analogous equations from
Section 10 [(10.16), (10.17)]. The tensorial density S, is a spin density and
for a microscopic spin density (of a Dirac field or Rarita-Schwinger field)
we have

$/'7=0 (11.22)

In the case of Mathesson spin (hydrodynamic macroscopic spin) one easily
checks the same. We have S, =u,S"", u,S*V=0, §¥*"=—8", u, is the
four-velocity of the fluid, and S** is a spin density tensor in the rest frame.
Thus, we get

g, =4rnad’S* (11.23)
4 tot

o g =""ja (11.24)
M ¢ *

where j*°““ is defined by (10.21).
Using equations (1.10) and (1.13) from Ref. 75, one transforms
(11.16) into

~ ~ ~ 87TG em eff

Ruu( W)~ 184aR(W) =—C—4—i’ (Tya+ Tya) (11.25)
where

eff 4 .

Tya=Tya— R .

SEGN
— 38ua8” (K" i p— kP 56% )] (11.26)

and «°®p, is defined by (11.21). Thus, we get spin-spin interaction corrections
from the Einstein-Cartan-Moffat theory.
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Now it is easy to see that
Qhv =A%, (11.27)
and
A p=RA", (11.28)
and the connection A*; satisfies the compatibility condition for y 45 on the

manifold P. For the polarization tensor M, we have the same geometrical
interpretation as before [see equation (10.24)].

12. GEODETIC EQUATIONS IN THE CASE OF
NONZERO SOURCES

In the nonsymmetric Kaluza-Klein theory (Section 9) we have the
following equation for geodesics:

o

“TF,5+ g Hyp)u" =0
(12.1)

=const (2= _q_)
o

where g is the charge and my, is the rest mass of a test particle. Here D/dt
means covariant derivative with respect to &“4 along a curve to which #%(t)
is tangent.

The usual interpretation of the geodetic equation in the Kaluza-Klein
theory is that equation (12.1), after taking a local section of the electromag-
netic bundle, is an equation of motion for a test particle in the gravitational
and electromagnetic fields. Moreover, F,, and H,, are well defined on E
and the shape of equation (12.1) does not change.

If we have nonzerg fermion current §° #0, it is necessary to put in place
of @“ 5 the connection A% and we get in the holonomic system of coordinates

(dzx" ~  dx? dx
m

B
N\ +A e T )+q(g"’F s +8“"H, )———0 (122)

The connection A”y is compatible with the metric 745. In Moffat’s theory
this kind of geodesic is called a nonextremal geodesic. Moreover, in Moffat’s
theory particles move along different geodesics,* i.e.,

2..a B
x4 { }@— g (12.3)
dr By) dr dr
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Thus, we should put in place of K(apy) the Christoffel symbol {43} for
€apy- Finally, we get

d*x” { }dx” dx ) Ix B
m + +q(g*"F,;+g"""H ———0 12.4
0( a2 gyl ar an q(g g 8) (12.4)

We will consider equation (12.4) the equation of motion for a test particle
in the nonsymmetric Kaluza-Klein theory. The connection

@ABz[ﬂ*({ﬁ'i}m)"‘g”Hﬁf)s l prey]
g/ (H,5+2F5,)8" | 0

(12.5)

is not compatible with the metric y4; on P, just as the connection

= {3,107 is not compatible with g,5 on E. In the theory with spin
sources, particles without spin and fermion charge move along geodesics in
@"5 (as supposed in Ref. 74). The problem of motion for spinning particles
with fermion charge demands further investigation.

Let us consider the geodesic equations (12.2) and (12.4) (the equation
of motion for the test particle) in more detail. In Section 9 we proved that
equation (12.2) has the following first integral of motion:

dx® dx*

ap) —— ——— =const 12.6
St dr dr ( )

if A5, =T",. In this way we are able to keep a normalization for the four-
velocity during the motion, i.e.,

dx®

8ap) - 7;—1 (12.7)
for
=10 if Gupuiul=1 (12.8)
where
ug=dx"
dt | =+,

i.e., we consider timelike trajectories of a test particle. For the null case we
need a different condmon ie., g([,muouo =0, In this case we put my=g=0.
However, in general, u°#0 and this describes the coupling of a particle to
the electromagnetic fieid.
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In the case of nonzero fermion current we have equation (12.2). Using
similar arguments as in Section 9, we can prove that for equation (12.2) we
have the integral of motion

dx”® dx*®

af) —— ——= t 12.9
Blap) —— = cons (12.9)

and we are able to keep the normalization for the four-velocity. We suppose
that const >0 because spacelike world-lines are unphysical. The additional
term for the Lorentz force

d B
g+ g H,, (12.10)
dr

plays the role of a reaction force for the nonholonomic constants
gaptt“ 1’ =1 (12.11)

Let us consider equation (12.4) and muiltiply both sides of (12.4) by
Bapy dx?/dr. We get

mo d dx® dxﬁ>
To @ g 0@ & oo, 0 12.12
2 dr (g‘ " ar dr o (12.12)

Thus, equation (12.4) has the same first integral of motion as equation
(12.2). This means that we are able to keep the normalization of the four-
velocity during the motion, ie., equation (11.10): we consider timelike
world-lines of a test particle (71, 70). In the case of a null-line we have my=
g=0 and g,u"u’ =0. Moreover, #° can be nonzero. In this way the term
(12.10) plays the role of a reaction force for nonholonomic constraints
(12.11) in equation (12.2) as in equation (12.4) (for my#0 and ¢+#0).

Let us pass to equation (10.20) in the weak-field approximation. We
have

8uv = Nuv Ay (12.13)
where
| <a«1 (12.14)
For the inverse tensor we have

guv=nuv_'_j;‘uv,__\:,an_naun?’Vhw (12.14a)
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Let us rewrite equation (10.20) in a more convenient form,

gD’y t+8ouD’ 5y

Ana®

= - 3 Sp(gHGgPV—gupgav_\l—gyvg[ap]) +g[ﬂp]Dpo'v (1215)

Let us consider the equation

(0 (0) ra’
8ovD ot 8ouDP o=~

Sp(gucgpv —8ur8ov + g vg[ap]) (12 16)

The solution of equation (12.16) is

© 2
D% p=—

g VSP(Zgu o811~ 280 vBup T 2g,,8 po)

~ 8uvBiopl T BvoBiup ~ BouBivpl) (12.17)

Let us consider the following transformation:

(n+1) (n+1)
gpv Dpuo- +gpp Dpo‘v

4rad )

=— 3 Sp(gllc'gpv_gupgpv+guvg[po]) +g[llP]Dpcrv (1218)

(n+1)
for n>0, or, after solving with respect to D*,,,

(n+1) 27Ta2

Dy == 3 g°7S(224081pv1 — 285 v8(uo) T 28vp8(po)

= EuvBiopl t BvoBiup) ~ BouBivpl)
\ (n) (n) (n)
+ 28" (811D v — BloptD v + iverD P o) (12.19)

for n>0. The solution of equation (10.20) is a fix point of (12.18) or (12.19).
Let us try to solve this equation using the iterative method based on (12.19).
Let us define

(n+1) (n)

D% =N sD" s (12.20)



686 Kalinowski

(n)
such that for n>0 we have (12.19) and D“,, is expressed by (12.17). We
get
(n+1) () | Q) =1 (n) (1)
D% —De=28""[8un(D ov— D’y )+ 8up(DPpo— D5 )
(n) (n—1)
_gIGP](Dpvu - Dpvu )} (12.21)
forn>1.
The tensors D”,, form in a natural way the 64-dimensional linear
(vector) space. Let us define a norm in this space:
D = max |D",,V| (12.22)
pv=1

Now this space is a Banach space. Usmg (12.14) and (12.15), one gets
(e () 1 (=)
| D —D|<24a{l+——j}iD— D |
1-4a

m @-1)
<T72a|D— D | (12.23)
If @ < 1/72, the transformation (12.20) is a contraction and according to the
Banach theorem it has one and only one fix point such that
©

*e=lim (N")5*,°.D" 5 (12.24)
where N" is nth interaction of the transformation (12.20). The limit is under-
stood to be with respect to the norm (12.22).

Now we can write (12.24) in the form
(=) ©

Da”o_z Naﬂ KyyaDﬂxs (1225)
where
()
N "°%.=lim (N")",°, (12.26)

The last limit is understood in the sense of the usual linear operator topology
generated by the topology of the Banach space. In this way we get, in the
weak-field approx1matlon

Aaﬂr + Daﬂr

2 ()

2na a K ov
N% Béyg SP(28x58[ov)

l:aﬁr" 3

- ngvg( pK) + 2gvrg( po) — &xvEl5p]
+8v581xp) ~ BoxBivo)) (12.27)
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If we use (12.27) and (9.36), we get for (12.2)

d*x°® = < )(dx )] 2natmy )
my|——+ l"” — N%,
0 [ dr? dr )\ de 3 "@’n

X g7V SP (28581 pv1 — 285vE(px) T 28vx€(p5)

dx? dr 4
= Bxv8150) T BvsBixp) ~ BoxBive)) | —— ’a

d
+ q(@F, 3~ g M ﬁFyv)—x——O (12.28)

where M ®*_, is defined by equation (9.35). Because M’ was considered
as the limit in the weak-field approximation for @ <1/96, we must choose

@ <min[1/72, 1/96]=1/96 (12.29)

Let us pass to equation (12.4). In the weak-field approximation for

a<1/96 we get
Sl )]
My + —_—
dr>  (By)\dr/\de

(c0) d B
+q(gWFyﬂ_g["”M"VynFuv . 7;CT_>=() (12_30)

13. NUMERICAL PREDICTIONS OF THE THEORY

Let us pass to equation (8.4). We get here an additional term for the
Lorentz force

L g H P (13.1)
ny

In the Moffat theory of gravitation there is an exact solution which is spher-
ically symmetric and static (Schwarzschild-like solution). It has the following
form®?:

—(1=2m/r)™" 0 0 1/
2
- 0
8= 0 T, 0 (132)
0 0 —rsin” 6 0

—-I*/P 0 0 (1=2m/r)(1+1*/r%
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For the inverse tensor g"" we have similarly

—(=2m/HA+1*/ry 0 0 —1?/r
v 0 -1/r 0 0
£~ 0 0 —1/(*sin’0) 0
%/ 0 0 (-2m/n™!
(13.3)

where m is the mass and /? is the fermion charge. Let us estimate the contribu-
tion of (13.1) to the Lorentz force term on the surface of the sun, using
(13.2) as a metric. In the Moffat theory®>

I=I5=(3.1—0.5) x 10* km (13.4)

and we have for the radius of the sun
Ro=0.7 % 10° km (13.5)

Thus, on the surface of the sun we get
wo=—1—%—z10”6 (13.6)

R%

If we consider equation (4.9) for (13.2), we get
Hﬁy=pr (137)
We get

4 yan kuﬂzﬁ_ g“F, uP (13.8)
0

my
But the only nonvanishing component of g”! is
g'=—w,~10"¢ (13.9)

and the contribution (13.8) to the Lorentz force is 10”® in comparison to
the usual Lorentz force term. Thus, it is negligible in the solar system.
However, for a neutron star we have®®

Iy=17km, Ry=6km, wyxl (13.10)

and this new term should play a role. Unfortunately, only g!'*'=wy#0.
Thus, we only have a new term for the electric part of the electromagnetic
field. It is the same for the new term in the Lagrangian

2(g[”“]Fuv)2=2W7v(F14)2=2W%vE§v (13.11)
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The electric field does not play any important role on the surface of neutron
stars, in contrast to the magnetic field, and this does not contradict observa-
tional data.

It is interesting to ask if this statement will hold in the case of nonzero
external sources. In order to do this, let us consider equation (10.18),

4 tot
aﬂguaz_gla (13.12)
where
J4 =)+ 2e8 (@ E, ) + é g“"0,p(8"F,.,) (13.13)

In equation (13.13) we get an addition effect, i.e., a new term in the total
current

278°(g!*"F,,) (13.14)

Let us estimate the influence of this term in the solar system and on the
surface of a neutron star. In order to do this, we consider a simple model
of dust with convective electric and fermion currents,

j¥=cqpu”® (13.15)
S =f*pu” (13.16)
where u” is the four-velocity of the dust, p is the density of the dust, g is the
electric charge of a dust particle, and f is its fermion charge (notice that
the constant a” does not appear here because we consider only one kind of

fermion and a*=f?). Let us consider an effective electric current on the
surface of the sun,

- [ev} a 4f2 %3 a
JU =7+ 2eSUg"F,,) =u’cp| q— Fe Eq )=cqarpu® (13.17)
o
where
4 212
qefr=q——R—2~9Eo (13.18)
©

In equation (13.17) we use that®**®

l 2
gl =y = _(_@_) (13.19)



690 Kalinowski

and
Flu=Eg (13.20)

is the electric field on the surface of the sun, /5 is the fermion number
parameter for the sun from the nonsymmetric theory of gravitation, and Rg
is the radius of the sun. We also have®®

IZ=f>Ng (13.21)

where N, is the number of protons for the sun. £ is here a universal constant
(fermion charge for a nucleon). Using equation (13.21), one easily gets

41'23m,,
off = Eo=qg—A 13.22
gerr=q R:(zDMO o=1q q ( )
where
M
No~—2 (13.23)
my

M, denotes the mass of the sun and m, the mass of the proton. Let us
estimate the contribution of Aq to geg:

41 13
Ag _—__0_._?_.’29’_EO (13.24)
glo g Ro Mg
One easily gets
E
léﬂ 26x 1076 —2— (13.25)
qlo [esu/cm’]
where
g~4.8 x 107 esu (elementary charge) (13.26)
Mo . 12x107 (13.27)
"y
If we put”®
E5~8x10%esu/cm?] (13.28)
we get
Aq ~107% (13.29)
q9lo

Thus, it is completely negligible on the surface on the sun.
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Let us come back to the formula (13.13) and estimate the value of an
electric field for which we have screening of the electric charge. This means
that

ger =0 (13.30)
and
E=FE, = ”—l—<59) ~16 x 10° [esu] (13.31)
4 p l@ l@ Cm
In this way
je=0 (13.32)
for E= Eq,.

Let us perform similar calculations for the surface of a neutron star.
We get

e d E 13.33
ger=¢q R%/MO N ( )
We have for a neutron star®*®®
L (13.34)
Wy=— )
N R%J
Thus,
2
‘A—q" : lo[zN 2 Ey (13.35)
qgin g RN MO
and we get
lé—q ~6x 10_30&“7 (13.36)
q1In [esu/cm’]
If we put’®
Ey=0.33 107 [esu] (13.37)
cm’
we get
ié"q‘ ~02x107" (13.38)
q v
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Thus, Ag is completely negligible on the surface of a neutron star. Let us
estimate the value of an electric field for which we have screening of the
electric charge, i.e.,

Ger =0 (13.39)
We get
R M
Ep=1 2 Z0x16x10° [ES—“-] (13.40)
8 lIoiy m, cm

Similar to the case for the sun, equation (13.40) indicates

jé=0 (13.41)

for E=E,,.

Thus, the additional term for the current does not contradict any obser-
vational or experimental data for the solar system or for the surface of a
neutron star.

Moreover, it is possible to predict significant effects by finding exact
solutions of the full field equations. This is possible using the more general
metric

—a 0 0 w
o0 0 (13.42
Bl o 0 —rsin’e 0 42)
-w 0 0 ¥
where
-1
a=|1-2 500 |
¥
lZ
== (13.43)

% =[1 _amy B(r)] (1 +€)
r ¥

Such solutions have been found and we discuss them in Sections 18-22.
14. SPIN SOURCES. WEAK-FIELD APPROXIMATION OF THE
GENERALIZED CARTAN EQUATION

In Ref. 74 we deal with spin sources in NGT (nonsymmetric gravitation
theory). In this way we construct an Einstein-Cartan-Moffat theory of
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gravitation.”” We also consider spin sources in the nonsymmetric Kaluza-
Klein theory in Section 11. We derive the generalized Cartan equation which
connects the spin density tensor and the generalized contortion tensor. This
equation is algebraic (generalized contortion does not propagate). We have

87[GN
gvapo-o'+gypr0'v= _Tgpvgyyscpy (141)

P P y: B
S k*u,=0

Let us solve this equation in the weak-field approximation, i.e., let us suppose
conditions (11.3). In order to do this, let us rewrite (14.1) in the following
way:

Sﬂ'GN
8ovk o T 8ouk oy =— —CT Eov8ruSs””

87G
( ngvg[w]S +g[up]'( UV) (14-2)

Let us consider the following equation:

© ) 871G
8ovK o+ 8oy K oy 2"—6—3—]Xgpvgwsopy (14.3)

where

© ©
K yo+ K5, =0

The solution of equation (13.3) is as follows:

‘0) 1 &G
ue= 4 N( wSe” —8yeSu"7) (14.4)

Let us consider the following transformation (for n>0):

(n+1) (n+h 87[GN
P = oy
Eov Kp/m t8ou Koy = JE gpvg}’#SG

387G
( ngvg[M]S +g[m)]" GV) (14.5)
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or equivalently

S 1 87[GN
Ky == s 2, 8vinSar””
(n) (n)
-(g[up]K ov g[o’p] K'puv) (146)
(n) An)
Kpav+vac=0 (1463)
for n>0.
We get

(nt+1) (n) (m (n—-1) (n) (n—1)
Kpua _Kpuo Z[g[up](’( ov— Koy )—g[ap}(prv— KPIJV )] (14.7)

The skew-symmetric tensors x“,, form a natural 24-dimensional linear
(vector) space. Let us introduce the following norm in this space:

x|l = max lK”,,VI (14.8)

MV =1

Thus, this is a Banach space. Using (14.7), (14.8), and (11.3), one gets

(n+1) () (n—1)

Il K —K||<4a||1<— K | (14.9)

Thus, the transformation (14.7) is a contraction if ¢ <1/4 and according to
the Banach theorem it has one and only one fix point such that

(]
k*,6= lim (M )”,JBC,",K «p (14.10)
H— 00
where we have
(n+1) p ()y wtiva B (©)
Kpuo‘ =M* v apyK af = (M ) pr K'ap (14]1)

for n>0 defined by equation (14.7); k@74 is expressed by equation (14.4).
M" is the nth iteration of the transformation (14.7). The limit (13.10) is
understood to be with respect to the norm (14.8). We can write (14.10) in
the form

() (0)
o= ML KT (14.12)

where

(o0)
MePP = lim (M™),F.7, (14.13)
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The last limit is understood in the sense of the usual linear operator topology
generated by the topology of the Banach space. Thus, we get

87I'GN
c}

M au o 18riaSp”° (14.14)

In Section 11 we use the so-called effective energy-momentum tensor:

eff

Tya=Tye—

(P g s g~ KPuyx”
87ZGN a—p+;B ay® up

~ 388" (K7 5= kP 5k )] (14.15)
Using equation (14.14), one easily gets

eff

1 v
T Tya+ {(M a— IH’ Vg(s[VSP]}I&);ﬂ

47[GN

M Y pyﬂwM V25" BotvSn “ BotySe™’

(o0)
1 + 5
- zg;,,,g”{(M Y P oot Se ™)

472Gy () @) .
+— MY LM 8oty S R ot S i ]} (14.16)

c
Thus, we get a spin-spin contact interaction similar to that in Einstein-
Cartan theory.”” In the case of a weak field we can write in the place of the
covariant derivative (semicolon) the partial derivative. We can omit terms
which are quadratic with respect to the spin density tensor. In this case we
can also use the zeroth-order approximation for x”,., i.e.,

(0)
Kpuo-= K'pyo'— nGN (gyy _gygSypy) (14.17)

Thus, we can write

eff 1

Tua = Tﬂll +Z 6—/\—’7’ (gyaSu - g'/pSaBy)
]
=Tua— aXp (Saﬁu Supa) + 5X’3 (h(,,,,)S h(”,)Sg")
I
+ p (h[ya]S h[yu]Saﬁy) (1418)

40X
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where

Saﬂu = nwsaﬂy

15. LINEARIZATION OF THE NONSYMMETRIC KALUZA-
KLEIN (JORDAN-THIRY) THEORY IN THE
ELECTROMAGNETIC CASE

Let us develop a linearization for the tensor g,,,
guv = nuv + hu v
where 1, is a Minkowski tensor."*"™ We have
1 2
g 8= (" R AR+ (Mt hie) =68
From (15.2) we get
1
BV =— nuanVﬁhﬁa
2 1
B == 0" W hga= 0"’ """ hoyhpa
and
guV___. nyv — lenvﬁhpa + lenvanaﬂhpyhaa +. .-
Let us write equation (4.9) in a more convenient form,

Hpa— 8" [8ps1H ;0 + 8rya1Hps) = Fpa— 28158’ Fpy
Using equations (15.6), (15.5), and (15.1), one gets

(15.1)

(15.2)

(15.3)

(15.4)

(15.5)

(15.6)

Hpa= (0" =170 heo+ 017070 hophse) - [hipsrHya + hryaiH ps)

= Fﬁa - 2h[5a]FBY(T’67 - Ti&nychm + nsgnyphcrh5ehpr)

Let us expand H,z in a power series in Agg:
© 0@
Huﬂ=Haﬁ+Haﬁ+Haﬁ+' ‘.
From (15.7) one gets

(0

H,,g = F,,p

() 5

Hg,= n’ (hips1Fya— h[05]Fﬂ3)

(2)

H o= 1"’y (PrasiFap ~ MipeyFoa)]

(15.7)

(15.8)

(15.9)
(15.10)

(15.11)
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Thus, we get for H,p up to the second order in 4
Hpo=Fpo+ ("~ h") (hipsiFya = hiasiFyp) (15.12)
where
D = 0" 0P R poy (15.13)
Let us pass to the electromagnetic Lagrangian in the nonsymmetric Kaluza-

Klein (Jordan-Thiry) theory

1 A4 a
,Q”em=§; [2(g[u ]FuV)z_Hy Fyd]

1 , .
" [2(8“"F,.) — g 8" Hp, Fpua (15.14)

Let us expand Z,,, in a power series with respect to /s,
(0 ) @

Lem=Lem+ Lemt Lemt -+ (15.15)
One gets from equations (15.14), (15.12), and (15.5)
© 1
Lem=——0""0""Fp,F,q (15.16)
8
(M 1 ;
Lom= = (""" + 0 )0 VrcaFpy Foa (15.17)

@ 1
gemz __8___ [n;lr(znﬁsna5n7a+ nﬁanysna5+ nsanyanﬂﬁ_ néanyanﬂa
T

aoc_ PBe

+ 7 =T P = Py a0y
+ %nya(ncunéanﬁt_*_ T’eynﬂrnﬁa_ nsanﬁrnéu_ n&unsrnﬁo‘)
+ 2P = 0 hsoheoFpy Fua (15.18)
In the first order of approximation in 4,,=g,, — 1, one gets
1 T T e a
$9m= _8—77.' [ﬂp"ﬂmFmFya— (T]BU"H + Uﬂ 77‘” )TIV hra . FﬁyFya] (]519)

Lem= _SL gPmeg " F, F,, (in the first order for 4,,) (15.19a)
r

Thus, one easily notices that there are no skewon-photon terms up to the

first order of approximation in A,,. The skewon field Ay,,) couples to the

electromagnetic field from the second order of approximation. Thus,
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skewon-phonon interactions are negligible in the linear approximation. Let
us pass to the Lagrangian for the scalar field in our theory,

Lo (F)=g"gs g0 W, (15.20)

The field ¥ is of course uncharged.
Let us expand % (V) into a power series with respect to A,z i.e.,

(0) ) 2)

L= Lscat t Lscat T Lscart- (1521)
We get
©
cgscal=0 (1522)
)]
£=0 (15.23)
) :
L sea= 0" gy ¥ W ¥ (15.24)

It is easy to see that the field ¥ does not propagate if A5 =0. Thus, the
propagation of the field ¥ is a purely nonsymmetric effect. This means that
the “gravitational constant” is really constant if the skewon field vanishes.
Let us suppose that the field ¥ is weak. This means that

W]« 1 (15.25)

Thus, we expand around ¥ =0 (i.e., around the nonsymmetric Kaluza-Klein
theory). We easily get

e—S\P___1_3\P+%\{l2+. - (15.26)

The field ¥ is the scalar field connected to the gravitational constant. The
field ¥ is the scalar part of the gravitational field. Qur approximation pre-
sented here is up to second order with respect to the gravitational field, i.e.,
with respect to 4,,=g,,—n,, and W¥. In this way one easily gets for the
Lagrangian in the nonsymmetric Jordan-Thiry theory (apart from the Lag-
rangian of the pure gravitational field from Moffat’s theory of gravitation)

0) () 2) (2) (V) )
L=(Lemt ZLent Lom) + Lscat— 3V (L em+ Lew) +9‘Pzzm (15.27)

It is easy to see that we get in this approximation the pseudo-mass-like term
for the field ¥

0)
5L o)V’ (15.28)
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and an interaction term

) n
“[B(Lemt Lem) ¥ (15.29)

The last expression (15.29) could be treated as an interaction of the field ¥
with sources, i.e.,

v-J (15.30)

where

(0) M
J==3(Lem+ Lem) (15.31)

is a external source for W¥. In the first-order of approximation in
by, =g, —1,, and ¥, one gets

i a O HT THo e
&= [0 FyyFua = (0" 0" 1) 0 hosFiy Fic]

= 3¥ (0™ 1" FpyFyua) (15.32)
i.e., we get an interaction term for the field P,
B(n™" 0" Fy,Fua)]¥ (15.33)

The field ¥ interacts, due to the term (15.30), with the electromagnetic field.
Despite this, the field ¥ is uncharged. The propagator of the field ¥ vanishes
in zeroth order of approximation with respect to A, =g,, ~ 1,,. It vanishes
also if Ay,,;=0. In the second order of approximation this propagator
depends on the field hy,;. The exact forms of £ &), Z4), and £ are
given by equations (15.16)-(15.18).

Let us remark on the convergence of the series appearing here. They
converge for a sufficiently small 4,,,. However, all the functions of 4,,, consid-
ered here (i.e., H,,, g"", Lm) are well defined for any 4,,. They are rational
functions of this variable. Moreover, the exact form of all these functions
are hard to get.

16. EQUATIONS OF MOTION FOR A TEST PARTICLE IN THE
LINEAR APPROXIMATION

Let us consider the equations for a test particle in the nonsymmetric
Kaluza-Klein theory for p=1 or ¥=0,!'®'%?

D o
L g rE L g P =0 ae.1
dr  my my
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where D/dr is the covariant derivative along the line with respect to the
connection @j, g is the charge, and m; is the mass of a test particle.
Using equation {15.5), we easily write (16.1) in the second order of
expansion with respect to 4,, and we get
Du*®
dr

+;% (" =00 hoe+ 007N hopho ) Fyput’
0

+_q_ (_hlaﬂ + n[aiplnﬂdnrehgphm)

iy
X [Fyp+ (0 ~ W) (hysyFop~hipsiFoy )P =0 (16.2)
If ¥ (or p) is not constant (the general case), we find in terms of ¥
Eua a aoc T o o, TE
7 +'q- (" =" hee+ 00"y hephcf)Frﬁuﬁ
T My

+ _‘1_ (_h[aﬂ + nr[a nrlvnmhwhm)
My

X [Fyp+ (1% = h“P) (hyy51F o~ hipsyFoy) "

2

1 v

__(_q_) (¥%),5(n"" =" hy,)
8 My,

2

1 . .

~~21..(;5—-) ‘P,p(nﬁa_na(ﬂh )ﬁhvﬂ+n7’( nﬁ) nw‘hyyhcv)=() (16.3)
0.

JALL S nﬂ[ﬁ nalvhuv (16.4)
It is easy to see that the skewon field has an influence on the motion of

a test particle to first order in the expansion h,=g,,—n,, and the scalar
field W.

17. THE GEODETIC EQUATIONS IN THE GENERAL CASE AND
THE GEODETIC DEVIATION EQUATION

Let us consider the geodesic equation on P in the nonsymmetric Jordan-
Thiry theory, which becomes an equation of motion of a test particle on E
after taking a local section of P,

Du®
dr

2
a, a 1 alad 1
+L (g F,,—g' ”’Hyp)u”——(—q—) g )(_2) =0 (7.1
My 8 Mo P N

For &%, F,,, H,,, and p well defined on E, it has the same form as
before. Equation (17.1) becomes equation (5.7) if p=1.
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Let us find the physical interpretation of the additional term

1{qY 1
— L) geo (—~) 17.2
8 (I/nu) & o (17.2)

B

This term describes the scalar, velocity-independent force acting on
the test particle. The force depends on the “chemical composition” of the
particle, because it has in front a factor (g/mo)’. Thus, it could be considered
as a new type of the force, maybe the “fifth force.” ***> In order to examine
this, let us suppose that F,,=0 (H,,=0) and consider the following

equation:
— 2
Dy 1 1
- —~(—q—) g~‘"’”(-3> =0 (17.1a)
dr  8\my P/,

Let us multiply both sides of (17.1) by g, in order to understand
the effect of an action of the scalar force on the test particle motion. One
easily finds

d (m dx?® dx 1 # df1
—< C o) )——i—( ) (17.3)
dr dr dr 16 my dr
where
. dx° d 1 1) dx?
u = and 1 = ) —_
dr dr \p P/, dr
1t is well known that
dx*® dx
MoBap) 1~ =E, (17.4)

has an interpretation as the total energy of a test particle in a rest frame.
Thus, the scalar force changes the energy of a test particle in the following

way:
E,_ 4" i( 1) (17.5)
dr 8mydr\p

Equation (17.5) goes to the first integral of motion

> — - p2=const (17.6)
0,
2
gapu’ — " 9 >=const (17.6a)
LT
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Thus, if the test particle is taken as a model of a charged planet in the
solar system, the rest mass of a single planet will change during its motion
according to equation (17.6). This result is easily understandable because of
the physical interpretation of the field p. This field is connected to the
effective gravitational constant

Ger=Gnp’ 7.7

(Gy is Newton’s constant).

Thus, if p#const, the effective strength of the gravitational interaction
changes during the motion and the energy of a test particle changes. More-
over, the total energy of a test particle and the field p is constant. Such a
change must be secular if considered in the solar system and this is the case,
because the field p seems to be massive with a short range.

In general the scalar force can act as a “friction” or an “amplification”
force. If such an effect exists in the solar system, it must be connected to the
global (cosmological) change of the effective gravitational constant coming
from the cosmological solution in the nonsymmetric Jordan-Thiry theory.
Unfortunately, such a solution is unknown.

For this it seems that the p=1 case is quite important. It corresponds
to the Ansatz ys5s(x)=const and leads to the normalization of the four-
velocity during the motion of a test particle,

g.5" (1)’ (1) =const (17.8)

The general five-dimensional case does not preserve this condition.
Thus, if we demand the condition (17.8) in this nonsymmetric Kaluza-Klein
theory, 7ss(x) =const is not an Ansatz, but rather a conclusion from (17.8).
In the next section we deal with this case in more detail, including field
equations and their properties.

Let us consider the geodetic deviation equation in our theory,

uPV v = [V, Vau'ul®¢M =0 (17.9)
or
PV ev" + R gt Cu® — QN sV EMuf =0 (17.9%)
In GRT one has
D" = dx?  dx®
——+R%,s— " —=0 17.10
dr’ S (17.10)

In the presence of nonzero torsion one gets

uPV g + R, 50”0 u® — 0 gV P =0 (17.11)



Nonsymmetric Kaluza-Klein Theory in EM Case 703

where ¥* =dx“/dr and v*=d{"/dr. We suppose, of course, as usual

V' =0 (17.9a)
In GRT we have
Du®
=0 17.10
I (17.10a)
and in the presence of torsion
uPV =0 (17.11a)

In this way we consider a generalization of the geodetic deviation equation
to the five-dimensional case and in a non-Riemannian geometry. In
GRT, {°(r) is called the geodetic deviation vector and equations
(17.10) and (17.10a) give a physical interpretation for the curvature tensor.
Using equations (4.8), (6.9a)-(6.9h), and (6.1)-(6.4), one derives from
equation (17.9%).

(”péﬁva +R%, WP’ — QV”ﬁ(f)ﬁvuaguuB) + qusgap(Hyﬁ —2F, g’

1 1
= L grerty o+ — o L grDp 4202 (g% Hyp
2 my 2p mo

=87 (Hyvy = 2Fiu) - Hipyal - 8" u” = [V, (0’8" Hip) + pHp, 8P,

+pg®*(H,,—2F,.)gp:8""p,,1 - vl + ‘q—{ﬁ[u[PZg"ﬁ (Huyp—2F8)
2pmy

+p°g"P(H, 5= 2F )07, (D) + 20787 p  F

+ 2Pgaﬂga{vg(a5)P,|al(Hu]ﬂ —2F, )+ 6u( PzgéaHSV) +pH, vg(ya)p,y
q

4
P My

+pg P (H,5—2F,5)8.s8 " Pp ,JJu" " + Z [V.(2p8"%p.,)

o ~ a)~(V q
+p*g’°g" P Hs,(Hpu—2Fp,) — 85,878 Vp 4p..] (; ¢ —2p%¢ Su")
0
+ L G, (F) 4P g7 (H y ~ 2F,)
2m0
— (g(5V)H‘m — gVﬁFsu)ﬁvua (;u n__g__ 2p255ul1>
0

] V. o
+- L (g Hy, — g Fs )8 (Hop— 2F )0 L= 20705
2 My my
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+2pX(Fyup— Hyup) (P w82 Hyyu? — ;‘i; (Fup—Hug)8"p.,
0,

1 . . _
— ;5 g[py]g<u5) D ( ngr H, ﬂuﬁ + 5 g(r ) p,y>

prmo
+(2p2§5uﬂ—i §">=o (17.12)
Mg
and
dvs vs ~(a sla
ot Hypo "+ g8 P ot 1 g, BV p ot
dr P 2p°my

_ N _2
+ (2V[uH s+ H,pQ7 (D) + 5 258V p.aF

2 a v v/ 2 ~(a
+; 2578" 5)P.|a|Hw|v1) Wit + [Vu (; £558° E)P,a)+ p’8’ HssH,,

1 ~(ad)~(v q s 1 ~(a
+— 2oup B8 ”p,ap.v} W' +—3 [2V[u (~ Eis1E ‘”p,.,)
p 2p°mo p

1 ~(a - T 3
+; g&yg( 6)P,aQ7uv(r) - 2p2gﬁ Hg (Hpyja — 2F,14)
2 xlad)x Y, 2 x(a
+ > g5, 8B P8P pap stV (; g.s8" P,a)+ p'g’"Hs H,,

1 (ad)m .
+ ;)5 gaugwg( a)g(M)P,aP,ﬂ:' Cuu

4

~ ~f(a q
PP Hpu = P&V .0 Hys — 2F,5)] <2po W= ¢ “)
4p"my Mg

- 0", (D) (H,,vu7~£’31 4, 3 gsvé(aa)p‘a>
p- hy 2p My

. a a q ~(a
- 2p2(g( 5)H5l3 -8 aFéﬁ) (H;’Vuy + 2p3m gyvg( Y)P.n> (Csup - 2mqp2 C”)
0 0
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2 ~(a 1 ~(a ~(yy
"; (Fup—Hyup)u'g, 587 p ol u” — o 2155187 P o8 B p U

x(2p§5uﬂ—§” i>=o (17.13)

my,

Let us consider a simpler case of equations (17.12)-(17.13), i.e., the
classical Kaluza-Klein theory case. One gets from equations (17.12)-(17.13)
for F,,=H,, and p=1

= ~ 1
(PV0° + R, P 0 u”) + 0°g"P Fspu” +~ 4 g% Fs 0"
B Bu B 2 m b4
0

+2(g°FspF,, + 8 FrinFipua)u’C u” — OV (g5 Fsp)u v

1 et a = o v
+= L [V,(8°F5.) = 2V, (8 P Fpp) ¢
2!110
__ 4 _sa B 4 55l
g°g"" F5,Fp, =200 =0 (17.14)
4}”10 Mo
and
dv’

& b Fpo" sl =V Fupu* P+ g7 FspF i+~ g5 Fs F 0 *u” =0
dr 27’110
(17.15)

where we use

u' =@’ u’)= (u”‘, _‘l__)

2p%my
=0
and
Ay :ggze’_)
=) (a’r’dr

We have as usual gq/mo=const and for u*=dx“/dr we have equation
(17.1) or the simpler equation in the Riemannian case,

P 1 4 genp =0 (17.16)
dr  my
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Moreover, in the Riemannian case we have

5
w14 (17.17)
dt 2 myg
or
x5=—i—(r-—ro)+x(5) (17.18)
2m0

Moreover, in this case we consider a flow of geodesics given by x*=x"(r, o)

and
= (ax " ij)
do’ oo

s o,00cUcR

o =00

o is a parameter such that for every o, #0,, x“(t, 0y) and x”(z, 6,) are
different geodesics. One can say that we have a family of geodesic curves
I'(0), ce U= R'. The geodesic considered by us is I'(oy), i.e., for o= oc,e U.
Thus,

1 d(q ) dxj
Se—(r—10) | L + X9 17.19
g 2 (T TO) do- (m() ° o=0gy do. o= 09 ( )
us=%;’;<mia) (17.20)
0 o =00
dS
;”—= (17.21)
T

In this way o’ is an integral of motion and equation (17.15) is redundant.
Equation (17.14) after the substitution of equations (17.19) and (17.20)
represents together with equation (17.16) an analogue of the geodetic devia-
tion equations for a charged particle equation of motion.

In the general case (i.e., non-Riemannian with ps#const) the situation
is more complex. Now we have

dx*® 1
T o= L (17.22)
dr 2p° my

where

p=p(1, 0)=p(x(7, 0))
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and
1 T4
x5=—ij 1 xi0) (17.23)
2 My Top (f’ 6)
1 5 T 5
gsz-ﬂ(iaj _dr + & (17.24)
200\mg J_ p(7,0)lo=0, dOlo-0p

o4 1 i(ia ! )
dr 200 \my (1, 06) o=
After substitution of equations (17.24)-(17.25) into equations (17.12)-
(17.13) we get the geodetic deviation equations in nonsymmetric Jordan—
Thiry theory (NJTT). They are analogous to the deviation equation for the
charged particle equation of motion in NJTT.

Let us remark on a physical interpretation of the vector {*= (%, £°).
The vector {*, “geodesic separation,” is the displacement (tangent vector)
from a point on the fiducial geodesic to a point on a nearby geodesic charac-
terized by the same value of an affine parameter 7. Thus, v = (¢%, v°) means
a relative “velocity” and #®Vzv* a relative “acceleration.” The relative
“acceleration’ equals, according to equation (17.9), a commutator of covari-
ant derivatives. Thus, we get “tidal forces” in NJTT (five-dimensional case),
i.e., for charged test particles. Equation (17.12) gives us “tidal forces” for
charged test particles in NJTT. In this equation we get gravitational “tidal
forces” from NGT, electromagnetic “tidal forces,” and additional effects
which can be treated as gravitoelectromagnetic tidal forces. The scalar field
pis also a source of additional “tidal forces.” These new effects are “interfer-
ence effects” between gravitational and electromagnetic interactions
described by NJTT. The commutator in equation (17.9) can be treated as a
five-dimensional analogue of “tide-producing gravitational forces.” In our
case this is “tide-producing gravitoelectromagnetic forces.” Our equations
are defined on a bundle manifold P. Due to the fact that U(1) is Abelian,
we get exactly the same equations.

Finally, let us remark that equation (17.12) represents tidal gravito-
electromagnetic forces and equation (17.13) is a new type of equation. It
governs the relative change of (g/mo)o for different test particles via v’ [see
equation (17.25)].

(17.25)

18. FIELD EQUATIONS FOR THE NONSYMMETRIC KALUZA-
KLEIN THEORY (CASE WITH p=1)

Let us consider a simpler version of our theory, i.e., the nonsymmetric
Kaluza-Klein theory (NKKT). In this case p=1 and from the Lagrangian
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of the theory [equations (6.5)] we get the field equations

Rop(W) = 3g.sR(W)=81Tap (18.1)
g, = (18.2)

Zuvo— Eevl o= uel 50 =0 (18.3)
0u(H ") =2g""05(g¥F,.,) (18.4)

We can rewrite equation (18.4)
V. H™ =2g""V,(g"1F,.) (18.4a)
Recall that the current on the right-hand side of equation (18.4) has

the property of the topological current, because

1 1
6(1‘!” = aa[g[aﬁlaﬁ(gw V]F,, V)] = g[ali]aa aﬁ(g[u"]py v) =() (18_5)
2r % 2~

modulo equation (18.2), i.e., it is conserved, by its definition.
We have

em

1 7, £ Vv
Top =Z; {28,088 HyaH .~ Zg[u ]Fquaﬁ

_%gaﬁ[Hvapv_2(g[”V]Fuv)2]} (186)
g“‘"]=\/:~gg“”]
H'*=—gg"g" Hy, (18.7)

The tensor H,, has an interpretation as a second electromagnetic field
strength tensor (see Section 8). We have

g T.p=0 (18.8)

Equations (18.1)-(18.4) can be written in the following form:

Riapy(T) =87 Tiapy (18.9)

Rigapy. (1) =87 Tigapy =0 (18.10)
r,=0 (18.11)
gﬂvvd_gévféua"gpéfgovzo (1812)

au(l__!au _2g[ﬂ'ﬂ](g["p]F[vB]))=O (1813)
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where Raﬁ(f) is the Moffat-Ricci tensor for the connection
@ 5=17,0"

S (18.14)

Iy =TIt

The condition (18.11) is equivalent to (18.2).

19. SPHERICALLY SYMMETRIC FIELDS IN THE
NONSYMMETRIC KALUZA-KLEIN THEORY

Let us suppose that the fundamental fields in the nonsymmetric Kaluza-
Klein theory possess spherical symmetry. According to Refs. 71 and 80-86,
one gets

—a 6 0 )
0 ~pB fsing8 0
Buv™ . . 2 (19.1)
0 —fsing —fBsin"d 0
-0 0 0 ¥y

where a, B, 7, f, and @ are real functions of r and ¢, with a, y>0. In
addition,

F|4=E(r, l), F23=BSin g (192)

and all other components of F,, vanish. For g"*, the only nonvanishing
components are

g”= 27

o —ay
B
ﬂ2+f2

g2=g% sin? O =—

g®lsin f=——— (19.3)

We suppose that
o’—ay#0 and  PPH+/*#0 (19.4)
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Let us suppose that H,g is also spherically symmetric, so that
H|4=D(", t), H23=Hsin 0 (195)

and other components vanish. Using equations (4.9), (19.1), and (19.3) it
can be shown that

Hyy=F,=E(r, 1) (19.6)
Hy;=F,3;=Bsin 0
The Bianchi identity (4.%) yields
B=By=const (19.7)
From equation (18.2) one gets

N &
a,y___wZ ﬁ2+f2

(19.8)

where /> is a constant of integration. In Moffat’s theory of gravitation this
constant has an interpretation as a fermion charge. From equation (18.13)
we have

E_—(Q/I)(B*+f*)+4fBy
@ Br+1*+41*

(19.9)

where Q is an integration constant. In the intermediate stages of calculation
we used the following expressions for H* and /-g:

H —E
H‘4=—ay:4w2=ay_m2 (19.10)

23:}5_21%7 (19.11)
J—g=sin 0[(ay —’)(B*+/*)}"” (19.12)

Thus, we get equations (18.9)-(18.12) plus the algebraic relations
(19.7)-(19.9). From equation (18.10) we get immediately

Rpps(T) ~ 87 Tpp=Ci sin 0 (19.13)
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where C;=const is an integration constant and

8 em 7fBg + fl4 <E>2

sino T BAs7 i\

fB _ I* EY

Yy <ﬂ2+f2 e w)
8B,l* E
B+ o

(19.14)

Equations (18.11) and (18.12) were solved in Ref. 82, in which the Ricci
tensor was written down for such a connection.

Note that the Moffat-Ricci tensor is a linear combination of the ordin-
ary Ricci tensor and the second contraction of the curvature tensor. How-
ever, equations (18.2) and (18.3) imply that®¥

~

I ua=0 (19.15)
and
T =[n((-)"))]. (19.16)
so that the second contraction is given by
Rapy=2(Tlupw=Tp ) =0 (19.17)
Consequently the Moffat-Ricci tensor in this case is identically equal to the

ordinary Ricci tensor used by Pant,*® which we shall denote by A,,,(T').
Thus, we get the following equations:

Aun(T)Y=87T

A[23](1:)_8”87T[231=C1 sin 0 (19.18)
where
8n?,,=a%E_z+%§i5
B+t e* B+f
2
e (ﬁTff%’—i_gZijrz g) (19.19)
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Using equation (19.9), we can write the last term in equation (19.19) in the

form
Bo+ 0%\
—4q (%) (19.20)

Moreover, it can be shown that

87 To=—" 82T}, (19.21)

a
87T =—r— Ty ="87T,
2 sing Y g

_ fm_l‘ﬁf |
4ﬂ<ﬂ2+f2 ﬁ2+f2(0 (19.22)
8ﬂ?|4=‘8ﬂ?‘41
__ 0 (1pE _grp E_ )
i (71 8By =B}
o[BI EY
w(ﬁsz i w) (19.23)

The rest of the components of T5; vanish. The electromagnetic Lagrangian
in this case is

1
gem=_‘“' [2(g[uV]Fuv)2_Hquyv)
87

=LLjﬂ_@&£f
87 l(ay -0\ I' o
2 2 2
__ 20 2(&“%” (19.24)

Finally, we have the following equations:
An(D)=8zT, (19.252)

Aea(T) =87 Tas (19.25b)
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Ao T) =87 T (19.25¢)

Ass(T) =87 T3 (19.25d)
A{zal(F)"Sﬂ?z3=C1 sin 0 (19.25¢)
Aqa(D)=0 (19.25f)

Using results from Ref. 82 and equation (19.22), one finds the identity
(see Appendix)

Azz(f)_gﬂTu: [A33(f)”87fT33] (19.26)

sin’ @

so that equation (19.25d) is not independent.
In the above
87Ty = a{[4°fBo— QB> +/ )T+ BY(B*+ 1 +41%)?
—4(fBo+ QI (B*+/7)}
X [(B+ B>+ +alh (19.27)
S _ 8 o
sin & 2 sin 0
_ T Bo(B*+/2+41) — f14fBo— QB +/ )
(BPH/)(BP+ 2 +41%)
+ {8Bol*[4Bol*> — QB>+ /AP +1+417) }
+a4f B+ (fBo+ QI%)} (19.28)
X[(BP+1H(B*+ 2 +417!

For T5% one finds

8 TM = 87[T“4]

_e

ﬁZ +f2

x {TP[41°f By~ QB>+ /DT

=8B, f [4°f Bo— QB+ /)] — *Bol( B+ >+ 4I%)*}

x [P+ 2+ah] (19.29)
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All(f); AM(f), A33(1:), A(|4)(f), A[]4](f), and A[23](I__‘) are given by
formulas from Ref. 82. For Z,,, one easily gets, using (19.24),
1 [ 4 (@;417&—9([*2 +f2))2_
dn B+ p+ri+ar

1 ([417320— szz J:fzz)lzﬂ (19.30)
l (B +f°+4l%

Lem=

20. STATIC, SPHERICALLY SYMMETRIC SOLUTION
Let us consider a spherical field configuration such that
By=f=0 (20.1)
Later we suppose that
p=r (20.2)

which is simply a coordinate choice. In addition, our quantities do not
depend on time (static case). One finds [see equation (19.9)]

g r
(substituting  =r*). Equations (19.29) now read
2 02 _ A72
AMI‘*)-@M:@
(B°+41%
2002 474
AMd3+Zgéﬁ—{%l=o
(B+4l%)
- 2 2___4[4
)~ BLE=4_
(B°+41%
A(14)=0
A[23]— 87;’;23 =C sin 8 (204)
and we have
em em 78%-16]*
Snﬂm=&ﬂh=wQ2ﬁ ol (20.5)

12
0= (20.6)
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We get

g
B D

1t is easy to see that the function (20.7) is bounded,

B < By = |E(J2 1)|=§2J (20.72)

Taking the linear combination

1 1
_A“+'—A44=0
a Y
one finds
d 4
—[log(ay)j=— —— 20.8
~ llog(an)]=—— 7 (20.8)
which gives
14
ay=B(l +—5) (20.8a)
¥

where B is a constant of integration. Taking B=1 and substituting
(20.8a) into the third equation of (20.4) yields

4 ray=1-02 s (20.8b)
dr 4 '
Thus, we have
I c 07
—=1 +—+—Q—K(r, h) (20.9)
o r ¥
where
1'4
K(r,)=—|———d 20.10
(r. ) J‘r“+4l4 ' ( )

and C is a constant of integration. Moreover,

r

2 4
y=(1+§+Q K(r, l))(l%—f;) (20.11)
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Performing the integration in (20.10), one gets

2
l:1+5+9—g(ﬁ) (20.12)
a robr\b

where b*=4/* and

_ 1 x2+ﬁx+1>
g(x)—4\/flog(x2—\/§x+l
—;la[arctg(\/fx+1)+arctg(\/2_ x—1)] (20.13)

N7

The function g(x) is plotted on Figure 2. Let us examine the properties of
the function

It can be shown that
) =0 (20.14)

Thus, for small  we get

PR P (20.15)

0.0

-0.2F

~-08

~0.8

=r

Fig. 2. The function g=g(x) versus x [equation (20.13)].
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We can avoid a singularity in @ at r=0 by choosing

C=0 (20.16)
so that
limeo™'=1 (20.17)
=0
Let us examine the asymptotic properties of ¢ and y. We get
— sz QZ
a ‘;:;1—7+r—2 (20.18)

For large r, a clearly behaves like the analogous function in the Reissner-
Nordstréom solution, with Q as the electric charge and with

2
2 nQ

cCmy= 20.19
T (20.19)
playing the role of the Newtonian mass. To summarize, we have
2 1A
a=1+2 (f 20.20
o E\p) (2020
where
. r
lim g (5) =0 (20.21)
and
lim a7'=1 (20.22)
In the neighborhood of r=0 one gets for our metric
-1 0 0 /¢
1 0 -7 0 0 (20.23)
Buv 0 0 —rsin’@ 0 '
=l/r 0 0 1+74/
(for » — 0). The determinant of the symmetric part of the metric is
(—8)'?=(*+1")""sin 0 (20.24)

The full determinant is

(—g)"*=r*sin 0 (20.25)
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Thus, there is a singularity at »=0. It is worth noting, however, that there
is no singularity in @ and only one singularity in ¥, due to the (1+/*/r%)
factor. Note that w, the skew-symmetric part of g,,, is also singular
at r=0.

Let us examine the properties of the electric field:

g r
TR (20.29
One easily sees that
E0)=0 (20.27)
and
E—— g (20.28)

row 2

Thus, there is no singularity at »=0. This is similar to the situation in Born-
Infeld electrodynamics.®” Let us calculate the charge for the electric field.
It is known that

4n/-g p=H* ;=divD (20.29)

where p is the charge density distribution and D is the electric induction
vector. One gets

E
ay—’

HY=\-¢ =J-gE (20.30)

and .
1o at
x r (F+41*

Vg p=

in 0 (20.31)

The total charge is

0 1 r4
o=| J-gpd’x=-16 1“J - dr=— 20.32
Qt t J;B g p Q . r (r4+4l4)2 Q ( )
Thus, we find the following interesting feature: the total electric charge
defined above is the same as the charge obtained from the asymptotic proper-
ties of the electric field £ and the metric (functions ¢ and y). Let us pass to
the calculation of the energy of the electromagnetic field. We have

em 1 1
3% T+ T =TY=—0°

—_— 20.33
8z P rat ( )
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The total energy is given by

1

A Eg=4r | PTYdr=——-%=m 20.34
C2 tot J‘() 4 2\/—2— b N ( )

where b*=4/*,
This energy can be treated as the energy of the electric field of the charge

Q distributed over a sphere of radius ry. That is,

Q2
M= Mgy = (20.35)
Fo
so that
ro=—5 (20.36)
ne

Let us suppose that the mass my is the mass of an electron,

My =m, and O=e (20.37)
We get, where e is the elementary charge,
2
met="_2 (20.38)
2J2 b
Thus, we get
j=Z & 7 (20.39)
4 me 4 '
where the classical radius of the electron is defined as
ra=—2-2.81x 107" [cm] (20.40)
M
Let us introduce the following dimensionless variables:
Q_0
== 20.41
(Y ( )
d (20.42)

=
Il
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Using equations (20.41) and (20.42), we have
2

al=1 +% g(R)=1—-¢P(R) (20.43)
2 4

q R 2%
=—— =q°FE 20.44
RR+1 7 (2044)

em ZR2 1
=4nTr?=1" =g 20.45
R T (2043)

4npr* 2¢ R*
= = — = ) 20.46
Pr b4 R R4+1 qpPr ( )

where ¢ is the normalized charge, R is the normalized radial coordinate, and
E, é, and pr are normalized electric field, radial energy distribution, and
radial charge distribution, respectively. These functions are plotted in
Figures 3-5. Recall that the radial charge distribution of our solution is simi-
lar to the radial charge distribution for Abraham’s model of the electron,®”
where the charge is distributed on a sphere of radius ry. In our case gravita-
tional forces play the role of Abraham’s elastic forces. The function

P(R)= —%g(R) (20.47)

is plotted in Figure 6. It expresses the properties of the generalized Newton-
ian potential for our solution.

0.0 T T T T T T T T

=01 -

-02fF .

my

-03¢p 1

-04} .

-0.5 | 1 1 1 1 ) i i

Fig. 3. The function £=E(R) versus R (normalized electric field)
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Ulﬁr

0.204-

(2

0.15p

010

0.05~

Fig. 4. The function é=&(R) versus R (normalized radial energy distribution) [equation
(2.45)].

0.0 T T T T T T I —

-0.1 4

T
1

-0.3
-0.4+ —
Pp os

T
I

-0.6

T
L

-0.7

-0.81- -

~-0.9

1.0 ] L 1 1 1 | ] I

Fig. 5. The function gr=p,(R) versus R (normalized radial charge distribution) [equation
(20.46)].

An interesting question which we can pose here concerns the existence
of event horizons. This problem reduces to finding real roots for the function
a”"=f(R, q). This depends of course on the value of the parameter g. Let
us consider the function

1
SR g)=1+¢ 2 g(R) (20.48)
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0.30

0.20
015

0.10+

0.05%

! 1 l 4 1 | {
8 10 12 14

Fig. 6. The function P=P(R) versus R (generalized Nordstr6m function) [equation (20.47)].

We have
f0,9)=1 (20.49a)
and
Jlim f(R, q)=1 (20.49b)

The function g(R) is monotonic and negative in the interval {0, c0). Let us
take R, (0, o0); we have

g_(lf_.2<0 (20.50)
R
Let us suppose that
1/2
q> {—— —R-'——] (20.51)
g(Ry)

It is easy to check that if (20.51) is satisfied, then

flg, R)<0 (20.52)

Thus, the function changes sign in the interval (0, R,). This means that there
exists a value Ry, €(0, R)) such that

f(g, Ru)=0 (20.53)
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The function f(g, R) also changes sign in the interval {R;, +0). Thus, there
exists a value Ry,e(R,, +0) such that

f(qs RHz) =0a RH| <Rl <RH2

[if condition (20.51) is satisfied]. Moreover, the function f(g, R) has one
minimum regardless of the value of g. Thus, it can cross a horizontal axis
two times at most. Hence there are two event horizons for sufficiently large
g in general.

Let us examine the situation with only one event horizon. The condi-
tions necessary for the existence of a single horizon are as follows:

flg, R)=0 (20.54a)
af
——(q, R)=0 20.54b
IR (4. R) ( )
One easily gets
Rs
=— 20.55
g(Ro) R4 (20.55)
44 1y1/2
o=t D" (20.56)
Ro
From equation (20.54) one gets
Ry=1.6787. .. (20.57a)
qo=1.78126. .. (20.57b)

Thus,
r=Rob=1/2 RyI=2.371
In this case the charge Q and the mass my are
Oo=qeb=2.53]
n(Rg+1)

2
0

20.58
1=2.48/ ( )

my=

For /=107 cm the total charge is

2
Go=2.53 L: 10" esu~ 10" elementary charges

VG

Al
my=2.48 o 107 g

N
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It is easy to see that if ¢> g, we have two horizons. This also implies that
my > my (20.59)

In other words, the Newtonian mass is large enough to form event horizons.
1f g=gqo, we have only one horizon and if ¢ <g,, we have no horizons. This
situation is described in Figure 7, where we plot the function a ™' =f(q, R)
for various values of the parameter q.

For example, for an electron one has

6\/—6 N
etectron = & 12
V2 le

Thus, there are no event horizons. It is worth noting that if there exists only
one event horizon, the solution is unstable due to pair creation and Hawking
radiation. Such “black holes” are “very hot”®” and decay very quickly. In
the case of two event horizons the solution is unstable because of pair
creation, If the Newtonian mass is sufficiently big, this solution could be
more stable because the Hawking effect is not important for very massive
black holes.®” The situation without any event horizons is very interesting
from the physical point of view, because it corresponds to the parameter ¢
for electrons (in general, for any elementary particle). Thus, we have in this
case a singularity without a horizon. The structure of this singularity is
different from the Reissner-Nordstrom singularity in general relativity and

~10""«qo (20.60)

Fig.7. The function @ " =f(g, R) versus R for various values of parameters g. Here ¢, denotes
the critical value for which we have only one event horizon for the value R=R,,. For the value
R= Ry, the function f(g, R) has a minimum regardless of the value of g. If g> ¢,, we have two
event horizons {two real roots of f(g, R} R, R;2]. If g<gy, there are no event horizons
[no real roots for f(q, R)].
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the Reissner-Nordstrom-like or Schwarzschildiike singularity in the non-
symmetric theory of gravitation [see Refs. 81 and 63 and equation (20.23)].

To summarize, we have found the following exact solution {in the form
suggested in Section 6 of Ref. 18):

—a 0 0 2/
0 - 0 0
BTl g 0 —Psin’0 0 (20.61)
-’/ 0 0 y
2 —1
=(1 +% 2 (i)) (20.62)
[4 2
7=(1+;Z>(1+%g(§)) (20.63)
b=41" (20.64)
2w
E=—-%|——" 20.65
A A\rt+4/f ( )

The function g is plotted on Figure 2 [see equation (20.13)]. The solution
has one horizon if

I

JGy

0=0p=2.53 (20.66)

If 9<Qy, there are no horizons. If 0> Q,, we have two horizons (as for
the Reissner—Nordstréom solution to the Einstein-Maxwell equations). In
other words, the horizons exist if the mass is sufficiently big {see equation
(20.59)]. Finally, let us calculate the ratio Q/my for our solution. We get,
using equation (20.34),

== (20.67)

Finally, let us check the generalized Bianchi identity for our solution.
We have

(8" T+ T))a+ 28", Tps=0 (20.68)
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In our case (spherical symmetry and static) one derives from equation
(20.68) the simpler expression

d d
o (g"Tn)—3g“” — Tan=0 (20.69)

and only the symmetric part of the energy-momentum tensor enters.
Substituting 7', from equation (20.4), one easily gets the desired identity.
Equation (20.68) can be derived from the Bianchi identity for R,s(I") or
R, (W) in our theory using the field equations and it expresses the energy-
momentum conservation laws. Thus, our solution satisfies the energy-
momentum conservation laws.

21. TEST PARTICLE MOTION IN THE EXACT SOLUTION
IN NKKT

In this section we consider equations of motion for test particles in
space-time described by our solution.

Let us calculate the connection I'g, and the Christoffel symbols for our
solution. We get (using results from Ref. 82)

- 27°
Thg=—5
ar
2,=—3sin20
=T3=ctg

- 1 ¥
,=——Th=-"
2 sin” 0 » a
2o, =1
Un=taa™, (21.1)
12
Thy=Thy=——
ar
- a’
r:1=2a
a1ty R *\ o
Fh= 5+ = 25_( )53
ra- 2a 8ar 2a

214 ' 3[4 l4 -1 7
F(,4)——+L=——(l+— "'q—
ra 2a

2y 2 r
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The remaining I”s are zero. Let us consider the symmetric part of our
solution, i.e.,

—a 0 0 0
0 -/ 0 0

Bum™l o 0 —Psin’0 0 (21.2)
0 0 0 4

where a and y are given by formulas (20.62) and (20.63). One easily finds
the determinant

4

/
g=det[gu.,]=— (1 +F) r*sin’ @ (21.3)

The determinant is not singular at r=0. The inverse tensor for g,

8498 =54 (21.4)
is the following:
—1/a 0 0 0
0 -1/ 0 0
) /r L, (1.5)
0 0 —-1/(r"sin"8) 0
t] 0 0 ¥

Let us calculate the Christoffel symbols for gg,,y;

a ~(a
{ 5 }Z% 8“8 puyr + eyurs — B (21.6)

We easily find

|
{ =~r—sm20
33, «a

2
{ =—3sin 20
33
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1 o= "\ a'
}=1‘= 25—(1+—4>——z
44) 2a 2a’r ) 2a’

4 ’ ’ l4 14 ~1
e
41 2y 2a ¥ r (21.7)
The remaining Christoffel symbols are zero. Let us write the equation of

motion for an uncharged test particle for our solution, i.e., the equation for
geodesics,

d*x® -, dxPax”
d—‘[2—+r (ﬂy)"d—;‘[—:() (218)

We easily find from (21.1)
dr o er 714 "\ o dt2
praciibund bl Bt orac i Rt d o d | e
dr® 2a \dr Ba“r /20 | \dt
2
~~[(d0> + sin? 9<d):|=0
a L \dt dr

2 . 2

d 0 gﬂﬁ_sm 20 <@) _ 21.9)
d‘r rdrdr 2 dt
d¢ 2drd¢ 2t6d¢d9 0

dr’ r dr dr dr dr

d*t [ 34 :|dr dt

=t — —=0

dar® [ 2r(I*++*) 2aldr dr

In the nonsymmetric theory of gravitation uncharged particles move along
geodesics in Riemannian geometry formed from g,.,,*? i.e., in Christoffel
symbols,

2..a a B
X +{ a}dx o (21.10)
dr B ) dr dt
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One easily finds from (21.7)
£t fe] Tl 9
dr* 2a \dr 2a%° ) 2a’ | \dr
2 2
+'—[(£19> +sin’ @ (ﬁ) }=O
a | \drt dt

2§ sin2 2d0 d

29 _sin 6(@) L2d0d_, Q1.11)
dr 2 dr r dr dr

2

d ‘fﬁéﬁéinctggﬁﬁ:o

dr® rdr dr dr dr

d’t [a’ I ] dr df _
|t

dr* 2a r(I*+rH]dr dr
Let us find the equations of motion for a charged test particle. In the non-
symmetric Kaluza-Klein theory (NKKT) (see Section 9)

d*x* - dx*? dx

173

— F —
it " ar ar

where g is the charge and my the rest mass of a test particle. Using
(20.9) and (20.7), one gets

dr o (dr>2 [714 ( 1“) }(dt)
il vl e B L
dt? dr 2a%° 2¢° | \d
2] ) o 2]
al\dr dr

9 Q e+ dr _
mo ar’ F+alt dr
d20+2 dr d6 sin 20 d¢

— =
dr® rdr dr 2 dr

d_2t+ 3 dr dt+ g raQ dr _
di® 2"+ dr dr mo r*+41* dr

In Ref. 25 and in Section 12 a different possibility is considered for the
equations of motion for a charged test particle,

( )[g‘”F —g[””H,,p]——— 0 (21.12)
W

(21.13)

2. a B a ﬂ
d x2 +{ a}_c{)f_ dx q [gayF _g[aﬂ}[ p] ________0 (21_14)
dr By) dt dr my
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Using (21.9) and (21.11), one finds the equations

2., 2 4 a 2 2
A P e o A R (o R P
dt” 2a\dt 2a°r ¥/ 20’ 1 \dt dr dr

qg O r+1* dt

mo ar® r*+81* dr

d*0 _sin 20 (d_qs)z 2.d6 dr

2 +22 %
dr? 2 \dr r drt dr

d‘f 249 dr ) g0 9290, (21.15)
dt* rdr dr dr dr

2 ' 4
_ci_i_’_lta + 4l ]dt a g raQ raQ dr _
dr 20 rI*+7Y

drdt myr +814 d‘c
Notice that the equations for 6 and ¢ are the same in (21.9), (21.11), (21.13),
and (21.15) regardliess of the connections and whether the particle is charged

or not. For ¢’ we have
Q% 1)
o ——+a - 21.16
r ( 41ty ( )

where ¢ is given by (20.13). According to the general properties of the
geodetic equations in Einstein’s unified field theory, the nonsymmetric theory
of gravitation, and the nonsymmetric Kaluza-Klein theory, equations
(20.9), (21.11), (21.3), and (21.15) have the following first integral of motion
(see Ref. 25 and Section 9):

2 2 2 2
y(—d—t> ~a (ﬁb—> -7 [(iﬁ) +sin® (1@ ]=const (21.17)
dr dr dr dr
We can choose const=1, i.e., we consider timelike world-lines and
2
y(ﬁii) ~a <dr) [(‘“)) +sin? 0 (d‘b)] i (21.18)
dt dr dr dr

Let us consider equations for € and ¢:

d*0 _sin20 (@)1; de dr

— =0

dt? 2 \dt/) rdrdr
d*¢ dg do  2.d¢ dr (21.19)
Cioctgo”? T

dr? dt dr v dr dr
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We easily find the first integral of motion of (21.10),

7 [(ﬂ)—)z+ sin® @ (@)2]=2—€° (21.20)
dr dt r
where
Eo=const (21.21)
Comparing (21.18) and (21.20), we get
2 2
(j—;) —a (%) =1*2—:§9 (21.22)

Let us consider the second equation of (21.19). We easily find the following
first integral of motion:

d_d)_ L
dr rlsin’ @

(21.23)

where L=const. Comparing (21.20) and (21.23), we get

2
de\ 1 L? )
~— =—|2F,— 21.24
(dr) r"( ° sin® 8 ( )

The first integrals (21.20) and (21.22) lead to the following simplifications
of equations (21.9), (21.11), (21.13), and (21.15):

2 4 2 4 /

- 2E,
i-z__?_;(ﬂ>_[—%+%}(1—z—€ﬂ>~——g=o (21.99)
dr* 8r(I"+¥)\dr gra(I*+ry 2a

d’t [ 314 __qdr dt
dr* L2r(1*+r" 2aldr dr

2. 4 2 4 ,
Q—%(ﬂ) —-[-—~—l4———4—+—“—2]<1—3§2)+2—15§=0 (21.11a)
de° 2r(I"+r) \dr 2ra(l+r") 2a ¥ ar

dt | a " dt dr
20 r(I*+r

dr? dr dr
dar 1t (&Y 714 @ 2E)\ 2E,
o iarapraad bend Bl bosearrambunt | St g Rac
dr” 8r(I"+r) \dr 8ar(l"+r") 2a r ar
qg QO r*+1* dr

my ar® ¥ +al* dr
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2 4 ’ 2
il <__3;lf4__i>ﬂ_d£+i raQ Ay (o) 13a)
dt \2r(I°++} 2a/drdt myr +40° dt
d’r * dr\ * o 2Ey\ 2E,
e Raarrranr Srnd Bl e b | St R
dv® 2r(I"+r)\dr 2ra(l”++") 2a ¥ ar
_4. Q r'+ldr_
my ar’ ¥ +4l* dr
2 , a 2
d—i+[—”—’~ L 4]ﬂﬂ+i raQ dr_ (21.152)
dv” [2a r(I"+)1dr dr my " +41% de

For angular coordinates we have for equations (20.9a), (21.11a), (21.13),
and (21.15a) the same equations (21.19) and the same first integrals of
motion (21.20), (21.22), and (21.23). In this section we consider timelike
world-lines of a charged test particle (rm,#0). Moreover, taking my=g=0
and const=0 in equation (21.17), one gets extremal and nonextremal nulil
trajectories on E.

It would be interesting to examine the geodetic completeness of our
solution for Einstein and Riemann connections. This will be done elsewhere.

22. SUMMARY OF THE PROPERTIES OF THE SOLUTION
AND PROSPECTS

We have found an exact static, spherically symmetric solution for the
nonsymmetric Kaluza-Klein theory (NKKT)."®**® Our solution has the
following properties: The metric (symmetric part of g,5) behaves asymptoti-
cally like the Reissner-Nordstrém solution of general relativity (apart from
a factor of 1+17*/r*), which is typical of the nonsymmetric gravitational
theory.®**" The most remarkable feature of this metric is that the function
o is not singular at =0 and goes to | as r — 0. We have calculated the
total energy of the solution, which is its Newtonian mass. This quantity
is constructed from g and /, the charge and fermion number parameters,
respectively. The electric field of our solution behaves asymptotically like
the Coulomb field generated by a charge Q. Moreover, this field vanishes at
r=0 and is nonsingular for all r. We get a maximal value of this field similar
{o that in Born-Infeld electrodynamics.®”*” We calculated the charge distri-
buiion for such a field and showed that it is nonsingular and equal to
zero at r=0. Asymptotically our solution behaves similar to the Reissner—
Nérdstrom-like solution in NGT.®” Although asymptotically we see a New-
tonian mass and an electric charge, at the origin (#=0) there is no mass or
electric charge (only fermion charge /). Thus, it seems that we get “mass”
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without mass and “charge” without charge. The total charge for our solution
is the same as the Coulomb charge (charge seen at infinity). The total mass
is the same as the Newtonian mass (mass seen at infinity).

In this sense it could be treated as a kind of geon.®” The Newtonian
mass is the self-interaction energy of all fields. This is in the spirit of the
Mach principle. The equality of the total and the Newtonian mass seems to
be connected to the topological properties of the space-time.

For example, if we consider this solution as a model of the electron, we
get a connection between the classical radius of the electron and its fermion
number parameter /. Note that in general relativity the total energy associ-
ated with the electric field of a pointlike electron is infinite.

Our solution possesses a singularity at r=0 in the determinant of the
full nonsymmetric metric. However, the (symmetric) metric seems to be less
singular. There is no singularity for the function ¢ and the determinant of
the symmetric part is not zero. The function y has a singularity only in the
factor 1 +/*/r* and the function @ =/?/r* has the usual singularity at r=0.
The electric field is not singular. Our solution possesses one or two event
horizons if the charge @ (and consequently the Newtonian mass) is
sufficiently large. The solution seems to represent a bounded system of gravi-
tational and electromagnetic fields. The radial energy density is zero at the
origin, and finite everywhere. The metric is spatially flat at the origin. For
a very small value of the parameter ¢ (see Figure 7) the function ¢ ~1, and
y=1+1*/¢*. If the parameter q is equal t0 gejeciron, ONE gets

1 —>-a‘l =1 _qglectronP(R)?— 1 _qglectron ° Pmaxz 1- 10_74:1 (221)

Thus, o is almost exactly one and y is almost exactly 1+/*/r*. The metric
is then as follows:

-1 0 0 2/
0 - 0 0
BTl 9 0 —sin’6 0 (22.2)
=1’/ 0 0 1+74/r*

The symmetric part of this metric is spatially flat. It is easy to see that such
behavior is valid for every elementary particle. The remarkable property of
{22.2) is that it is described completely by the parameter / (fermion number),
which plays the role of the second gravitational charge in the nonsymmetric
theory of gravitation. It seems that the fermion number parameter should
play a significant role in the unification of elementary particle theory and
gravity. In equation (20.2) the fermion number parameter is much more
important than the mass. Thus, the geometry of space-time on the level of
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elementary particles is determined by the second gravitational charge. The
function a~' in general relativity has the following form:
2
al=1- (22.3)
r
This function describes the difference between the Schwarzschild solu-
tion and a Minkowski metric; in particular, the curvature of the space. In
the solar system at the earth’s orbit one finds

a”'(lau)=1-3%1078 (22.4)

where 1 au=1.45 x 10® km is one astronomical unit (the radius of the earth’s
orbit) and we have put into equation (22.3)

2m=~35km (22.5)

which is the Schwarzschild radius of the sun. If we compare equation (22.4)
with (22.1), we easily see that our solution with ¢= gejectron 18 spatially much
flatter everywhere than three-space at the orbit of the earth.

Note that in equation (22.2) we get in a natural way the constant /,
which has the dimension of length. Some authors claim that it is impossible
to get a true unification of the gravitational field and elementary particles
without a new universal constant of the dimension of length. In the nonsym-
metric theory of gravitation there exists such a constant connected to the
fermion number. The nonsymmetric Kaluza-Klein theory, which unifies the
nonsymmetric theory of gravitation with a gauge field theory (i.e., the elec-
tromagnetic field), possesses this constant as well. This fact might enable
this investigation to lead ultimately to a true unification of gravity and
elementary particles.

Here are some prospects for further investigations:

1. Find nonstatic solutions if they exist.

2. Find axially symmetric stationary solutions of the field equations.
This is more difficult, because there is no known axially symmetric
stationary solution in the Einstein unified field theory and in NGT.

3. Extend our formalism to the non-Abelian, nonsymmetric Kaluza-
Klein theory,®?¥ ie., find such a solution for the case G=SU(2)
and G=SU(2)x U(1). This will offer a model of an electron or a
lepton constructed from gravitational, electromagnetic, and weak
interactions.

4. Extend our solution for the nonsymmetric Jordan-Thiry theory."'®

Recently R. B. Mann®" found eight classes of spherically symmetric
and static solutions in NKKT. These solutions are more general and some
of them have no singularities in gravitational and electromagnetic fields. Our
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solution is a special case of his solutions. Some of these solutions possess
nonzero magnetic field (B, #0) and nonzero gp,3;=/#0. The nonsingular
solutions are parametrized by fermion charge /%, electric charge Q, and a
new constant u,. This constant is related to g3 as /” is to g4 It plays a
similar role for g;,,; as the magnetic charge for F,,. In some solutions the
skewon singularity /?/#* is replaced by an expression of the form /2/(+*+ 7).

Much work needs to be done to find the physical significance of these
solutions. It is important to determine whether they are classically stable
(for example, in the Poincaré sense). If they are, it would have very important
consequences for the possible existence of quantum particles based on
solitonlike solutions. Probably the nonsingular aspects of the solutions are
a manifestation of the topological properties of NKKT. This is supported
by the topological character of the current J,,.

Finally, let us notice that our solution has many similarities with
Demianski’s®? solution of coupled Born-Infeld and Einstein equations. This
solution is nonsingular for a special choice of the integration constant
{c=0) as in our case. Moreover, it depends on the Born-Infeld constant and
cannot be considered as a model of an electron. The mass of the solution is
the seif-interaction energy of the gravitational and electric fields. It seems
that NKKT has many unexpected relations to nonlinear electrodynamics in
curved space-time. This statement can also be supported by the form of the
Born-Infeld Lagrangian. Originally®” it was supposed that

gm=£—{[~det<bgw>1'/2—[—det(bngw)l'”} (22.6)
T

where g,,=g,, is a symmetric metric tensor and F,, is the strength of the
electromagnetic field, = const. The form of the Lagrangian reveals its con-
nection to the nonsymmetric field theory because of the nonsymmetric tensor

Puv=bg,,+Fy,, (22.7)

However, in NGT and NKKT the skew-symmetric part of the metric has a
different, i.e., gravitational interpretation.

APPENDIX
Using equations (2.9) and (2.11) from Ref. 82 and the equation

2 4
_J)__Z:_?l__z (A.1)
ay—o° p+f
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one gets

An(D)=~2¢"=l(¢")+4C” 1+~—¢ +§-2[3(¢)2+4DZ]

rye_e v
<2ay¢ )(Za 2ay¢ 2;/)
~,‘1(£’_2_+_7_')+ﬁ(93+i>
or\2ay 2y) at\y* 2y

a)(i_e 4 &
(}' b )(27/ 2ay¢ 2a+2¢) a2
Au(D)=2¢~ s((¢)2+1>]+ ¢+ [3(¢)+4C1
o) V_Lfi f__fi)
+(2ay¢+2t1)<27 2ay¢ 2a
A . (i'_ o’ /__7_'.)
6t(2ay¢+2a)+ 2a 2ay¢ 2y

+£(m~ ¢3+L'> ' (A.3)

or\a®’ 2a

()= {(2/0;% ) 2C-p¢’ @

S > logl0’ (B +/7)]

+M+1_£(M)

4a 4y
-¥bbe 0 logla*(B*+/2)] -2 (/¢ +2ﬁD)}
8y ot 4y
=—— Axn(D) (A4)
in“ 0

(e ;. a v 1.
A(M)(F)_‘(4ay¢+4aw4—?;_z¢>

!

2 7
+E(L¢I+y -——‘—Z—-lqﬁ’)
at \day 4y 4a 4
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' a 1 LAV A
e (2ay¢ 2a 4¢> (72¢ 2y)<2ay¢+5;>

+(m2 ¢'+7—')(l¢3+ o’ o+ d>+——¢ é

2ay 2y/\2 2ay 2a/ Z2ay
_DC B2+ 12
212 a (A-5)
Appy(F) =sin 0 [(@%}ﬁf) - = (fe—p#)
oL (f97+26C) (9’—'+—“’—2¢’+7—')
8a a «a y
+—(f¢+2ﬂp) ("+i’— ¢+ “)
2ay 2a
D
E (f"’”ﬁ )+D @D~ ﬂ¢)] (A6)
t 4y

where
¢=log(B*+1?)

BB

ﬂZ +f2
_Br-8f

ﬁ2 +f2

An overdot means a derivative with respect to time ¢, and a prime means a
derivative with respect to radius r. We also have

C

AuaT) 25{% [ty +4c7) ’g% [($")*+4DY

+“‘¢ (¢p'+ ¢)“£a<¢g)
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