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We present the nonsymmetric Kaluza-Klein and Jordan-Thiry theories as 
interesting propositions of physics in higher dimensions. We consider the five- 
dimensional (electromagnetic) case. The work is devoted to a five-dimensional 
unification of the NGT (nonsymmetric theory of gravitation), electromagnetism, 
and scalar forces in a Jordan-Thiry manner. We find "interference effects" 
between gravitational and electromagnetic fields which appear to be due to the 
skew-symmetric part of the metric. Our unification, called the nonsymmetric 
Jordan-Thiry theory, becomes the classical Jordan-Thiry theory if the skew- 
symmetric part of the metric is zero. It becomes the classical Kalnza-Klein theory 
if the scalar field p = l (Kaluza's Ansatz). We also deal with material sources in 
the nonsymmetric Kaluza-Klein theory for the electromagnetic case. We consider 
phenomenological sources with a nonzero fermion current, a nonzero electric 
current, and a nonzero spin density tensor. From the Palatini variational principle 
we find equations for the gravitational and electromagnetic fields. We also con- 
sider the geodetic equations in the theory and the equation of motion for charged 
test particles. We consider some numerical predictions of the nonsymmetric 
Kaluza-Klein theory with nonzero (and with zero) material sources. We prove 
that they do not contradict any experimental data for the solar system and on 
the surface of a neutron star. We deal also with spin sources in the nonsymmetric 
Kaluza-Klein theory. We find an exact, static, spherically symmetric solution in 
the nonsymmetric Kaluza-Klein theory in the electromagnetic case. This solution 
has the remarkable property of describing "mass without mass" and "charge 
without charge." We examine its properties and a physical interpretation. We 
consider a linear version of the theory, finding the electromagnetic Lagrangian 
up to the second order of approximation with respect to hv,,=gvv-rlvv. We 
prove that in the zeroth and first orders of approximation there is no skewon- 
photon interaction. We deal also with the Lagrangian for the scalar field (con- 
nected to the "gravitational constant"). We prove that in the zer0th and first 
orders of approximation the Lagrangian vanishes. 

I N T R O D U C T I O N  

T h e  a i m  o f  this p a p e r  is to  c o n s t r u c t  the  K a l u z a - K l e i n  ( J o r d a n - T h i r y )  
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qnstitute of Theoretical Physics, Warsaw University, 00-681 Warsaw, Poland. 

611 
0020-7748/92/0400-0611506.50/0 �9 1992 Plenum Publishing Corporation 



612 Kalinowski 

words, it will be a five-dimensional unification of the NGT (nonsymmetric 
theory of gravitation), classical Maxwell electromagnetism, and scalar forces 
connected to the gravitational constant (as in scalar-tensor theories of gravi- 
tation). Our unification uses a nonsymmetric metrization of fiber bundles. 

The electromagnetic bundle means a principal fiber bundle over a space- 
time E with a structural group U(1). The connection defined on this bundle 
is called an electromagnetic connection. 

Roughly speaking, in general relativity, mass curves space-time. In 
NGT, mass and fermion charge (fermion number) curve and twist space- 
time. In the classical Kaluza-Klein theory, mass curves space-time and 
electric charge curves the fifth dimension. In the nonsymmetric Kaluza- 
Klein theory, mass and fermion number curves and twist space-time, and 
electric charge curves and twists the fifth dimension. 

NGT is based on three fundamental geometrical quantities: two connec- 
tions F~pr and f f ' ~  and the nonsymmetric metric gap. This nonsymmetric 
metric is equivalent to the existence of two geometrical objects defined on 
space-time: the symmetric metric tensor 

and the two-form 

g_= gt, vlO" ^ 0 v 

In the general theory of relativity, we have only one connection with vanish- 
ing torsion and a symmetric metric on _space-time. Thus, we have only [" 
and f~. Of course, in NGT, connections F and W are interrelated and have 
nonvanishing torsion. 

The classical Kaluza-Klein approach was based on the following 
ideasJ m),2 

On space-time we have Riemannian geometry based on the metric 
tensor g, and we have general relativity with the local coordinate invariance 
principle. Simultaneously we have a principal fiber bundle over space-time 
with the structural group U(1). The connection on this bundle describes the 
electromagnetic field. We have also the local gauge invariance principle for 
an electromagnetic field. 

The local coordinate invariance principle and the local gauge invariance 
principle seem to be two important principles of invariance. The Kaluza- 
Klein theory unifies these two concepts and reduces them to the first, the 
local coordinate invariance principle, but in a five-dimensional world. 

The basic idea is very simple. On the gauge group U(1) we have a bi- 
invariant symmetric tensor. The tensor plays the role of a metric in the Lie 

2In this paper, references are cited as superscript numerals in parentheses. 
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algebra of the gauge group U(I) which is simply R (real numbers). We can 
choose as this tensor the number (-1).  

On the electromagnetic bundle we have the natural distribution of hori- 
zontal spaces induced by the connection. 

The metric tensor f~ acts on space-time. 
We can divide every tangent vector to the electromagnetic bundle in 

only one way (the connection is established) into two parts: horizontal and 
vertical. The horizontal part we can project onto space-time and the vertical 
one, due to the connection, onto the Lie algebra of the gauge group (i.e., 
onto R). Thus, we have (symmetric) metrization of the fiber bundle. We can 
"measure" independently the length of both parts by two (symmetric) metric 
tensors and after this add these two results. Having the principal fiber bundle 
metrized in this way, we introduce a linear connection on the bundle which 
is compatible in some sense with the metric. The simplest solution is to 
suppose that this connection is the Levi-Civita connection. This was done 
in the five-dimensional Kaluza-Klein theory ~1"2) If we calculate the Ricci 
curvature scalar for this connection, we get the sum of the Ricci curvature 
scalar on space-time and the electromagnetic Lagrangian. 

Introducing the scalar field in a Jordan-Thiry manner, we get a Lag- 
rangian for a scalar field. However, this term can be removed as a four- 
divergence from the Lagrangian density. This, means it does not propagate 
in the five-dimen~ional Riemannian case. Thus, the five-dimensional Jordan- 
Thiry (Kaluza-Klein) theory does not offer any "interference effects" 
between gravity and electromagnetism. This forces us to abandon the 
Riemannian geometry defined on the electromagnetic bundle and to use a 
different connection. In our case it is a five-dimensional generalization of 
the geometry from Einstein's unified field theory t3-6) (in the Kaufman 
version ~4'5)) defined on the electromagnetic bundle. This geometry is bi- 
invariant with respect to the action of the group U(I). It defines the Einstein- 
Kaufman U(1) structure. 

This theory, the nonsymmetric Kaluza-Klein theory, unifies the coor- 
dinate invariance principle from NGT and the local gauge invariance prin- 
ciple from electrodynamics. 

Following the ideas concerning the geometry of the Kaluza-Klein 
theory described above, it is necessary to find the nonsymmetric metrization 
of the electromagnetic bundle over space-time. The existence of a non- 
symmetric metric on the fiber bundle is equivalent to the existence of two 
geometrical objects: ~7 and ~. The first, ~, is a symmetric bi-invariant tensor 
that is the same as in the classical Kaluza-Klein (Jordan-Thiry) theory, and 
the second, _~, is a 2-form on the fiber bundle. (For classical results see Refs. 
7-61.) 

Following the basic idea of the previous construction, it is necessary to 
choose a 2-form on the gauge group U(1). This form is zero on U(1), because 
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every 2-form on U(1) is zero. This means that in the electromagnetic case 
y=tr*(_g), where ~r* is the pullback of ~r (the natural projection on the 
electromagnetic bundle). We can also introduce the scalar field in the 
Jordan-Thiry manner. 

In this new version of the Jordan-Thiry theory we get the following 
new results. We get "interference effects" between electromagnetic and gravi- 
tational fields, OsJ9'2s) i.e. : 

1. A new term in the electromagnetic Lagrangian 

(g[. V]Fu,,)2 
4~r 

2. The existence of an electromagnetic polarization of the vacuum Map 
with the interpretation as a torsion in the fifth dimension. 

3. An additional term for the Lorentz force term in the equation of 
motion for a test particle 

where q is the charge of the test particle and m0 its rest mass. 
4. A new energy-momentum tensor T~' for an electromagnetic field 

with zero trace. 
5. The source for the electromagnetic field--the conserved current j~. 

All of these effects vanish if the metric of space-time becomes symmetric. 
We get in the Moffat-Ricci curvature scalar on a five-dimensional mani- 

fold _P the Lagrangian of the scalar field ~,  

and this field is connected to the effective gravitational constant by K= e -3w 

(K is the gravitational "constant"). The trace of the energy-momentum 
tensor for this field is not zero. This suggests that q? is massive and has 
Yukawa-type behavior. This indicates that q~ has short range and the theory 
does not violate the equivalence principle. Furthermore, the gravitational 
"constant" K does not change at long distances. This statement also supports 
the masslike term in the equation for qJ 

-241r e-3W ~~ 

where 

1 

= 8~  [2(gC" ~F .  ~)~ - H~"F,,u] 

is the Lagrangian for the electromagnetic field in our theory. 
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We also get a scalar-force term in the equation of motion for a charged 
test particle moving in the gravitational and electromagnetic fields: 

_1(qlZ~(a,)  

This force is of short range if qJ is of short range. In our theory all of 
these additional effects (in comparison to the classical Kaluza-Klein theory) 
vanish if the metric of  space-time becomes symmetric. First of  all, ~F does 
not propagate. It is easy to see that 

~sca l  : 0 

for 

g[ .  vJ = 0 

and because of this, the additional term in the equation of motion for a test 
particle also vanishes. It is of course important to find significant physical 
consequences of the "interference effects" present in the nonsymmetric 
Kaluza-Klein (Jordan-Thiry) theory. The best way to achieve this is to find 
an exact solution of the full field equations. We find an exact solution of the 
field equations in the static, spherically symmetric case in the form suggested 
in Section 6 of  ref. 18. Even in this, the simplest, case we get the following 
interesting results ~176 

1. The electric field is nonsingular at r=O and has Coulomb-like 
behavior for large r. This is similar to the situation in Born-Infeld 
electrodynamics/87) Thus, there is a maximal value of the electric 
field. 

2. Asymptotically (for large r) the full solution behaves like the charged 
Reissner-N6rdstr6m type solution in NGT. 

3. The Newtonian mass (mass seen at infinity) equals the total energy 
of the solution and is constructed from an electric charge Q and 
from a fermion charge l. 

4. The energy distribution is not singular everywhere. This means that 
the solution describes a bounded system of electromagnetic and 
gravitational fields. 

5. There is no singularity at r = 0  in the function a=gi~; that is, 
g t l ( r = 0 ) =  1. 

6. The only singularities at 1"=0 are in co=gD4]=12/r 2 and in a factor 
(1 + 14/r 4) in the function 7, = g44. There is also the usual singularity 
in the determinant of the full nonsymmetric tensor ~ =  r 2 sin 0 
at r=O. 
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7. The charge distribution is nonsingular. 
8. For sufficiently large charge Q there exist one or two event horizons, 

just as in the Reissner-N6rdstr6m solution to the Einstein-Maxwell 
equations. Sufficiently large charge in the present case means 
sufficiently large Newtonian mass as well. 

This solution is interesting as a classical model of a charged particle 
constructed from gravitational and electromagnetic fields. If  we suppose that 
the Newtonian mass of our solutions is the mass of an electron, we get a 
relationship between the classical radius of an electron and the parameter 1 
from NGT. The most fascinating aspect of our solution is that it describes 
"mass without mass" and "charge without charge" in the following sense. 
At the origin, r =  0 (or anywhere) there are no Coulomb-like or Newton- 
like first- and second-order poles with charge and mass as residues. This is 
true for the metric and for the electric field. 

Let us make some remarks on differences between the nonsymmetric 
Kaluza-Klein and Jordan-Thiry theories. In the nonsymmetric Kaluza- 
Klein theory there is an Ansatz p =  1 [y55(x)= -1].  This condition seems to 
be quite arbitrary and because of this we consider a more general case called 
Jordan-Thiry theory where y55(x)=-p2(x)  is a dynamical field. 

Moreover, the detailed examination of the geodetic equations (for a 
curve F) in both cases reveals the following. If  p = const, the geodetic equa- 
tions possess an integral of motion 

dx ~ dx ~ 
g~t~ - - = c o n s t  (*) 

dr  dr 

or y(hor(u(r)) ,  hor (u( r ) ) )=  const on F c P, which allows us to maintain an 
initial normalization of the four-velocity for a test particle. Horizontally is 
understood in the sense of the electromagnetic connection. In the case with 
7/ss(x) r (i.e., p:~ 1) this is not possible in general. We discuss this 
problem in Sections 9, 12, and 17. For this the condition y55(x)=const 
does not seem to be an Ansatz in the theory but rather a conclusion from 
equation (.). 

This paper is organized as follows. In Section 1 we give some elements 
of the geometry. The second section describes the nonsymmetric tensor on 
a Lie group. The third gives a formulation of the nonsymmetric metrization 
of the principal bundle. In Section 4 we formulate the nonsymmetric Jordan- 
Thiry theory. We calculate connections aJAs and W~n on the five-dimen- 
sional manifold which are analogous to connections o3 ~p and ff'~p from 
NGT and Einstein-Kaufman theory. In Section 5 we write the geodetic 
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equation on P (nonsymmetrically metrized electromagnetic bundle) and we 
find a new correction to the Lorentz force tenn. Section 6 is devoted to the 
calculation of the 2-forms of torsion and the curvature for the connection 
09AB. After this we write the curvature tensor for C0AA and its contractions. 
Using the obtained results, we calculate the Moffat-Ricci tensor and the 
Moffat-Ricci curvature scalar for the connection WAB. In Section 7 we deal 
with conformal transformation of g~,v and a scalar field. In Section 8 we 
define the Palatini variational principle for the Moffat-Ricci curvature scalar 
R(W). We get field equations for gravitational and electromagnetic fields. 
We discuss and interpret our results and point out all differences between 
the classical and the nonsymmetric Jordan-Thiry (Kaluza-Klein) theories. 
We write down all "interference effects" between gravitational and electro- 
magnetic fields which appear in our theory. In Section 9 we deal in detail 
with an equation of motion for a test particle. In Section 10 we introduce 
material external sources into the nonsymmetric Kaluza-Klein theory. 
Section 11 is devoted to the spin sources in our theory. In Section 12 we 
examine geodetic equations in the case of nonzero external sources. Section 
13 is devoted to numerical predictions of the theory. In Section 14 we deal 
with spin sources in the weak-field approximation. Section 15 is devoted to 
the linearization procedure in the nonsymmetric Jordan-Thiry (Kaluza- 
Klein) theory. In Section 16 we consider the equation of motion for a test 
particle in the linear approximation. Section 17 is devoted to the geodetic 
equations in the general case (p ~ const) and to geodetic deviation equations. 
In Sections 18-22 we consider a stationary, spherically symmetric field in 
the nonsymmetric Kaluza-Klein theory. We find the exact solution of the 
field equation and examine its properties. In the Appendix we give some 
additional details of our calculations. 

1. ELEMENTS OF GEOMETRY 

In this section we introduce notations and define the geometric quanti- 
ties used in the paper. We use a smooth principal fiber bundle _P, which 
includes in its definition the following list of  differentiable manifolds and 
smooth maps: 

A total (bundle) space P. 
A base space E; in our case it is a space-time. 
A projection Jr: _P ~ E. 
A map * :  P •  G ~ _P defining the action of G on _P; if a, beG and 

e~G is the unit element, then qb(a) o @(b)=*(ba) ,  qb(e)=id, and * ( a ) p =  
*(p ,  a) = Rap=pa; moreover, Jr o q~(a) =Jr. Here 09 is a l-form of a connec- 
tion on _P with values in the Lie algebra of the group G. 
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Let * ' (a)  be the tangent map to *(a)  and **(a) be contragradient to 
* (a )  at the point a. The form co is a form of Ad type, i.e., 

O*(a)co = Ad,_ jco (1.1) 

where Ad, e GL(g) is the tangent map to the internal automorphism of the 
group G (i.e., it is an adjoint representation of a group G) 

ad,(b) = aba-I 

Due to the form co, we can introduce the distribution field of linear elements 
H,, reP_, where H~c Tr(P) is a subspace of the space tangent to P at a point 
r and 

We have 

vEHr r co(v) = 0 (1.2) 

T,.(P) -- V,. | Hr (1.3) 

where H,. is called the subspace of horizontal vectors and Vr that of vertical 
vectors. For vertical vectors w G we have ~r'(v)=0. This means that v is 
tangent to fibers. Let us define 

v = hor(v) + ver(v), hor(v) ~H,., ver(v) ~ Vr (1.4) 

It is well known that the distribution Hr is equivalent to the choice of  the 
connection co. We can reproduce the connection form co demanding that 
7 [ "  t �9 Ira. Hr ~ T,~(r)(E) is a vector space isomorphism (dim H~=dim E=4) ,  
H| = dp'(g)H,. [T~0.)(E) is a tangent space to space-time E at a point ~r (r)]. 
We use the operation hot for forms, i.e., 

(hor fl)(X, Y ) =  fl(hor X, hor Y) (1.5) 

where X, Y~ T,.(P_). The 2-form of curvature of the connection co is 

f~ = hor do  (1.6) 

It is also a form of Ad type like co. The 2-form f~ obeys the structural Cartan 
equation 

n--- dco +�89 co] (1.7) 

where [co, co](X, Y)= [co(X), co( Y)]. Bianchi's identity for co is 

hor df~ = 0 (1.8) 
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For the principal fiber bundle we use the following convenient scheme 
(Figure 1A). The map e: U ~  P, U c E  (U open), so that e o r t -- idv,  is 
called a local section. From the physical point of  view this means choosing 

�9 .a  

E 

OJ G 

A 

Fig. 1. 

IP" Co GL(n+4,R) 

l 
p i l l  

G Jr ~' & 
/ / / / / !  

/ / / / / /  

E 

31" 

GL (n,R) 

GL( 4,R ) 

B 

(A) The principal fiber bundle P. (B) Principal fiber bundles P, P', P", and P~. Here 
P"  is the principal fiber bundle of frames over G. 
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the gauge. Thus, 

Kalinowski 

e'co = e*(o"X. )  = A". g 'X~  = A 
(1.9) 

e ~ = e  ( ~  Xa) =-~F~vO ^ # " X .  

We also introduce the notation 

~-~a--l  ~la al-' 0 v (1.10) - -  21Jpv  TM /k 

where 0 ~ = Jr*(0 u) and 

a _ _  a b F ~ v -  O~ A"v - O,,A~u + CbcA t~ A~v 

X~ (a = 1, 2 . . . . .  dim G = n) are generators of the Lie algebra g of the group 
G and 

[ X a ,  Xb]  = C e a b X c  

Analogously we can introduce a second local section f :  U--+ P, and 
corresponding to it A = f ' c 0 ,  F = f * O .  For every xE U c  E there is an element 
g(x) E G such that f ( x )  = e(x)g(x)  = Rg(x)e(x) = O(e(x),  g(x)).  Due to equa- 
tion (1.1) and an analogous formula for f~, one gets A = Adg-, A + g-  z dg 
and F=Adg- ,F .  These formulas give a geometrical meaning of gauge 
transformation. 

In this paper we use also a linear connection on manifolds P and E 
using the formalism of differential forms. So the basic quantity is a 1-form 
of the connection coAn. This is an R-valued (coefficient) connection form 
and it is referred to the principal fiber bundle of frames with _P or E as a 
base. The 2-form of curvature is 

O"s=dcoAn+O~Ac^ CO cs (1.1 1) 

and the 2-form of torsion 

| =DO A (1.12) 

where 0 A are basic forms, and D means the exterior covariant derivative 
with respect to was. The following relations define the interrelation between 
our symbols and the generally used ones: 

co An = FA~cO c 

|  ,nA aB 0 c ~ Bcv A (1.13) 

I D A  I?IC 0 D ~'~AB--~'~l~. BCD v A 

where FAnc are coefficients of the connection (they do not have to be sym- 
metric in indices B and C), RAsco is the tensor of curvature, and QAnc is 
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the tensor of torsion. Covariant exterior differentiation with respect to r 
is given by 

DE A = dE A + co Ac ̂  E c 
(1.14) 

DEAn=dEAn+ co 4c A ZCB-- co CB A Z A C 

The forms of curvature ~A8 and torsion 0 A obey Bianchi identities 

DrUB = 0 
(1.15) 

FOA =~qAB ̂  0 B 

In the paper we use also Einstein's + and - differentiations for the non- 
symmetric metric tensor gAn, 

DgA + b- = DgA n -- gA oQ DBcO C (1.16) 

where D is the covariant exterior derivative with respect to co A and Q~ 
is the tensor of torsion for co AB. In a homolonomic system of coordinates 
we easily get 

Dg.4+~_=gA+B_;cOC=(g.48,c-gi~BF~176 (1.17) 

All quantities introduced in this section and their precise definitions can be 
found in Refs. 51 and 59-61. 

Finally let us connect the general formalism of the principal fiber bundle 
with the formalism of a linear connection on E or _P. 

Let M be an m-dimensional pseudo-Riemannian manifold with metric 
g of arbitrary signature. Let T(M) be the tangent bundle and O(M, g) the 
principal fiber bundle of frames (orthonormal frames) over M. The structure 
group of O(M, g) is the group Gl(m, •) or the subgroup of  Gl(m, ~), 
O(m-p,  p), which leaves the metric invariant. Let Fl be the projection of 
O(M, g) onto M. Let X be a tangent vector at a point x in O(M, g). The 
canonical or soldering form 0 is an Rm-valued form on O(M, g) whose Ath 
component 0A at x of X is the Ath component of FI'(X) in the frame x. The 
connection form O = co ABXSA is a 1-form on O(M, g) which takes its values 
in the Lie algebra gl(m, ~) of Gl(m, ~) or in o(m-p,  p) of O(m-p,  p) and 
satisfies the structure equations 

do5 +�89 o5] = ~ =  ITIor drh (1.18) 

where ITIor is understood in the sense of o5 and ~=~ABXBA is a 
gl (m, R)(o(m --p, p))-valued 2-form of the curvature. We can write equation 
(1.18) using R2'"-valued forms and commutation relations of the Lie algebra 
gl (m, R) (o(m, m -p)), 

(~AB=dcb AB+ ~ AC ̂  cb C8 (1.19) 
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Taking any local section of  O(M,  g), e, one can get the coefficients of the 
connection, curvature, basic forms, and torsion: 

e* ('~) AB: co AB 

e* ~ A = f~ A B 

e*OA =O A 

e * ~  A = | 

(1.20) 

The forms of the right-hand side of equations (1.20) are the forms defined 
in equations (1.11)-(1.14), etc. We call this formalism a linear (affine, metric, 
Riemannian, Einstein) connections on M. 

In our theory it is necessary to consider at least four principal fiber 
bundles: a principal fiber bundle _P over E with a structural group G (a 
gauge group), connection co, and horizontally operator hor; a principal fiber 
bundle P' of frames over (E, g) with the connection o5 aoX'~ = co', a struc- 
tural group GI(4, R) (O(1 ,  3)), and an operator of horizontally hor; a princi- 
pal fiber bundle P" of frames over (_P, 7/) (a metrized fiber bundle _P) with a 
structural group Gl (4+n ,  • ) ( O ( n +  3, 1)), a connection a3ABXB~ = O5, and 
an operator of horizontality hor; and a principal fiber bundle of frames 
P "  over G with a projection H" ,  operator of horizontality (hor)", a connec- 
tion o3, and the structural group Gl(n, ~) .  Moreover, in order to simplify 
considerations, we use the formalism of linear connection coefficients on 
manifolds (E, g), (_P, 7), and a principal fiber bundle formalism for _P, i.e., 
a principal fiber bundle over E with the structural group G a gauge group. 
I believe this is a way to make the formalism more natural and readable 
(see Fig. 1B). 

2. THE NONSYMMETRIC TENSOR ON A LIE GROUP 

Let G be a Lie group and define on G a tensor field h = hobv ~ | v b and 
a field of a 2-form k=k , ,bV~^  v b, where 

dv ~= -�89 ^ V ~ (2.1) 

v a is the usual left-invariant frame on G, and CObr are structure constants. 
Let X,, be generators of  a Lie algebra G -  9; X~ are left-invariant vector fields 
on G and they are dual to the forms v a: 

[X,,, Xb] = CC,,bX,. (2.2) 
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Using h and k, we construct a tensor field on G, 

lab = hab -b pkab (2.3) 

where p is a real number. Recall that the left-invariant vector fields on G 
are infinitesimal transformations of  a right action of  G on G. The symbol 
Ado(g) means a matrix of  the adjoint representation of the group G. For 
brevity we denote it Ad g. We let R mean the right-action of the group G 
on G, and L the left-action [R(g), L(g) ,  g~G] .  

We are looking for the following h and k: 

or, in terms of  the tensor lab, 

R*(g)h=h (2.4) 

R*(g)k=lc (2.5) 

R*(g ) l=  l (2.6) 

The condition (2.5) can be rewritten 

(R*(g))kg,(Xg,, Ygl)=kglg(Xglg t, Yg,g')=kgn(Xg~, Yg,) (2.5a) 

where g, g~ e G. 
Moreover,  X, Yare left-invariant vector fields on G. Thus, X g = X ~ = X ,  

Yg = Y~ = Y, and 

(R*(g))kg,(X, Y)=kg~g(Xg', Yg ' )=kg , (X ,  Y )  (2.5b) 

where g e G  is a unit element of  G. 
In order to find h and k satisfying (2.4) and (2.5), we define a linear 

connection on G such that 

"b = -C"bcv  c (2.7) 

Let the covariant differentiation with respect to 03~b be Vc and an 
A 

exterior covariant differentiation D. It is easy to see that this connection is 
flat, 

(~"b = d03 ~ + 03 "c/x 03 c b = 0 (2.8) 

with nonzero torsion 

~ 3 " = [ ) V " = d o " +  &"b A V" =~Cl "'" boo b ̂  V c (2.8a) 



624 Kalinowski 

and with a tensor of torsion 

A 

Q"b~ = C"b~ (2.9) 

This connection is also metric. It means that the Killing-Caftan tensor 
on the group G is absolutely parallel with respect to & "b. A parallel transport 
according to this connection is a right-action of the group G on G. 

One can easily find that (2.4)-(2.6) are equivalent to the condition 

Verb=0 (2.10) 

Thus in order to find h and k, we should solve equations (2.10) on the 
group G. Let us prove that the system (2.10) is self-consistent. 

In order to do this, let us consider the commutator of the covariant 
derivatives 

A ^ A, ,  + 

2Vt,.Vkll,.d = R ,klba+ R a,.ki~b (2.11) 

Moreover, Cb"b is flat and we get 

2r OP~kVpl,.u = CP~kV fica, Vp~d=0 (2.12) 

which proves the consistency of (2.10) 
We can get this result using the equivalent form of equation (2.10), 

(2.13) 

It is easy to see that a bi-invariant tensor h on G satisfies (2.13) identi- 
cally (for example, a Killing-Cartan tensor). 

Thus, one gets for a tensor kab 

Vck,,h=Xck,,b + k,,bC~c + k,,,C'b'c=O (2.14) 

It is easy to see that if kab satisfies (2.14), b �9 kab satisfies this condition 
as well for b = const. 

In the case of an Abelian group, k is bi-invariant on G. 
The interesting case in our theory is a semisimple group G. In this case 

kab cannot be bi-invariant. The only bi-invariant 2-form on the semisimple 
Lie group G is a zero form. Moreover, equation (2.14) always has a solution 
on a semisimple group and k is right-invariant. Moreover, we suppose that 
the symmetric part of I is bi-invariant (left- and right-invariant) and k only 
right-invariant. 
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where 

We can also define k in a special way, 

k(.4, B)=h([A, B], V), A =A"Xo, B = B a X ,  (2.15) 

V= Vd | V a is a covector  field on G (it is r ight-invariant)  and h is a Kill ing- 
Car tan  tensor  on G. 

In order  to be more  familiar with the not ion of  a tensor  k, we find it 
for  the g r o u p  8 0 ( 3 ) .  (62) In this case we have left-invariant vector  fields 

such that  

/ • 0 
e~ = cos Vt - sin u/[cot  0 

00 \ Og 

e2=sin  ~ f-~ + c o s  ~ ( c o t  0 ~? 
00 0~r 

0 
I? 3 - -  

sin 0 

sin 0 

[e,,, eb] = -6abcec; a, b, c = 1, 2, 3 (2.18) 

0, ~b, and ~t are Euler ang les - - the  usual parametr izat ion o f  SO(3),  

0<0_<Jr  

0 <  ~/<2rr  (2.19) 

0<~b<2Jr  

and e~23 = 1, with e~b,. a Levi-Civita symbol. (62) In this case one can easily 
integrate (2.16) ; one f inds  

Vj(O, c~, ~) = a ( c o s  q~ cos ~ - c o s  0 sin ~b sin ~t) 

+ b sin Vt sin 0 - e(sin ~b cos ~, + cos 0 cos ~b sin Vt) 

V2(O, c~, gt) =a(s in  gt cos q~+cos 0 cos ~t sin ~b ) (2.20) 

- b cos gt sin 0 + c(cos 0 cos ~b cos gt - sin ~b sin ~t) 

~(O,  qb, g t ) = a s i n O s i n O + b c o s O + c s i n ~ s i n O ,  a , b , c = c o n s t  

VcVa--O (2.16) 
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I n  the  s imp le r  case  a = c = 0 ,  b 4 : 0 ,  o n e  gets  

V~ = b sin 0 sin ~t 

V2 = - b  sin 0 cos  ~t 

113 = b cos  O, b = c o n s t  

F o r  

kab = 'F'abc Vc 

we get  

k.b = 

/ 
0 

- (a sin 4~ sin 0 

+ b cos 0 

+ c sin ~b sin 0) 

a(sin ~r cos ~b 

+cos 0 cos ~, sin q~) 

- b cos ~t sin 0 

+ c(cos 0 cos 4, cos q~ 

- s in  qt sin ~') 

(a sin ~b sin 0 

+bcos 0 

+ c sin ~b sin O) 

0 

- [a(cos q~ cos 

- cos 0 sin ~ sin ~) 

+ b sin r sin 0 

- c(sin ~b cos 

+ cos 0 cos ~b sin r 

In  the  s imp le r  case  fo r  a = c = 0 ,  b e 0 ,  o n e  gets  

0 b cos  0 

k.b = - b  cos  0 0 

b s i n 0 c o s v t  - b  sin 0 sin ~' 

K a l i n o w s k i  

(2 .20a)  

(2.21)  

- [a(sin Vt cos ~b 

+cos 0 cos Vt sin ~b) 

- b cos Vt sin 0 

+ c(cos 0 cos qt cos 

- sin q~ sin ~)] 

[a(cos ~ cos V' 

- cos 0 sin 4, sin ~) 

+ b sin ~' sin 0 

- c(sin ~b cos 

+cos Ocos ~bsin ~)] 

(2.22) 

- b  sin 0 cos  ~'~ 

b s i n  OoC~ ~ ) (2 .22a)  
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Thus ,  i f  we choose  for  h a K i l l i n g - C a r t a n  t enso r  on  S O ( 3 )  [this is a u n i q u e  
b i - i n v a r i a n t  t enso r  o n  S O ( 3 )  modulo c o n s t a n t  factor] ,  

hab = --2~ab (2.23) 

we easi ly get 

/ab 

- 2  

u[a(sin V cos 4' 

+cos 0 cos V sin 4') 

- fl cos ~ sin 0 

+ 7(cos 0 cos 4' cos ~v 

- sin 4' sin g)] 

-p [a ( s in  V cos 4' 

p(a  sin 4' sin 0 +cos 0 cos ~ sin 4') 

+ fl cos 0 - fl cos ~ sin 0 

+ ~, sin 4' sin O) + ~,(cos 0 cos 4' cos l? 

- sin 4' sin I/)] 

/a[a(cos 4' cos ~" 

-cos  0 sin 4' sin ~,) 

- 2  + fl sin g sin 0 

- y(sin 4' cos Vt 

+cos 0 cos 4' sin ~)] 

-p[a(cos  4' cos ~r 

-cos  0 sin 4'sin ~) 

+ fl sin g sin 0 

- 7(sin 4' cos ~t 

+ cos 0 cos 4' sin g)] 

- 2  

(2.24) 

where  St=r l (a2+b2+c2)  J/2, 1/2= 1, a = a / S t ,  f l=b/S t ,  a n d  7=c/S t .  In  the 

s imple r  case a = c = O ,  b r  one  gets  ( a b s o r b i n g  fl b y  St) 

- 2  

lab = -St  COS 0 

k--St sin 0 cos 

p cos 0 st sin 0 cos ~ 

- 2  p sin 0 cos ) 
- p  sin 0 cos ~' - 2  

(2 .24a)  

F o r  a n  inverse  t enso r  l ab such tha t  

l,,bl~c = ib~l,, = 3b (2.25) 

we have  

Aab 
1 ~ = 

A 
(2.26) 
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where A = de t ( / ab )=-2 (4  + p 2), Aab is a cofactor matrix, and 

A ~ ' = 4 + p  2 sin 2 0 sin 2 Vt 

A ~2= - ( 2 p  cos O+p 2 sin 2 0 sin ~' cos ~,) 

AJ3= (p2 cos 0 sin 0 sin ~ - 2 p  sin 0 cos ~)  

A 2, _z (2p cos 0 - p  2 sin 2 0 sin ~ cos ~)  

A 22 = (4 + p 2 sin 2 0 cos 2 Vt) 

A 23 = - (2p sin 0 sin ~' + p 2 cos 0 sin 0 cos Vt) 

A 31 = (p2 cos 0 sin 0 sin ~ t+2p  sin 0 cos ~,) 

A 32 = (2p sin 0 sin ~ - p 2 cos 0 sin 0 cos ~)  

A 33 = (4 + p 2 COS 2 0 )  

(2.27) 

In the case of  SO(3), equation (2.22) is the most  general tensor satisfying 
(2.5) except for a constant factor in front. Thus, this tensor is unique for 
SO(3) modulo a constant factor. 

In the case of  any SO(n) one can find k and I similarly using Euler angle 
parametrization and so for the classical groups SU(n), Sp(2n), G2, F4, E6, 
ET, Es. In the case of  solvable and nilpotent groups we can also try to find 
bi-invariant skew-symmetric tensors. 

Finally, we suggest a general form of the tensor kab on a semi-simple 
group G, i.e., such that equation (2.4) is satisfied. The solutions of  equations 
(2.10) and (2.14) are as follows: 

lab( e c) = la'b'( 6) ( eAd'C)',,( eAa'C)b'b 

and 

k,,o( e c) = k,,,b,( e) ( eAd'C)a',,( e'4a'c)bb 

One writes 

k,b(g) =f~'b' U"',,(g) Ub'b(g), g ~ G (2.28) 

where U(g)= Ado(g) is an adjoint representation of  the group G. It  is easy 
to see that for (2.28) we have 

V,.k,,b = 0 (2.29) 

f,o = --fbo = const (2.30) 
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and it is defined in the representation space of the adjoint representation of 
the group G. In the case of the group SO(3) one has 

f ,b = eabcf~ (2.31) 

kob = e,~bcVc (2.31a) 

and 

Vo =f~,UC',(g) (2.32) 

If we choosef~= (0, 0, b), we get equation (2.20a). Moreover, this is always 
possible because an orthogonal [SO(3)] transformation can transform any 
vectorfinto (0, 0, +[Jf]l ), where IlfH is the length o f f  The semisimple Lie 
group G can be considered a Riemannian manifold equipped with a bi- 
invariant tensor h (a Killing-Cartan tensor) and a connection induced by 
this tensor. This Riemannian manifold has a constant curvature. Such a 
manifold has a maximal group of isometrics H of dimension �89 + 1 ), n = 
dim G. (59) (The isometry is here understood in the sense of the metric meas- 
ured along geodetic lines in Riemannian geometry induced by a Killing- 
Cartan tensor.) This group is a Lie group. It is easy to see that for 
G=SO(3) we have H=SO(3) xDso(3) and dimSO(3)~)SO(3)=6, 
dim SO(3)=3. The group SO(3) leaves the Killing-Cartan tensor hob 
invariant 

ha,b,A"'aAb'b=h,,b (2.33) 

where A e SO(3). 
Moreover, f~a has exactly three arbitrary parameters and solutions of 

equation (2.14) have the same freedom in arbitrary constants. This suggests 
that the tensor (2.28) could be in some sense unique modulo an isometry on 
SO(3) and a constant factor b. In this case the classification of k~b tensors 
on an SO(3) could be reduced to the classification of skew-symmetric tensors 
fob with respect to the action of the group SO(3). In general, the situation 
is more complex, because SO(n),  n = dim G, does not leave the commutator 
(Lie bracket) invariant. 

Let us suppose that G is compact. In this case we should find all 
inequivalent fob tensors with respect to an orthogonal transformation 
AESO(n) .  This means we should transform fa~ to a canonical form via an 
orthogonal matrix, i.e., 

(f~b) = f  ~ f ' =  ( f ' h )  = A r f  A = A-~ f  A (2.34) 
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For  skew-symmetric matrices we have the following canonical forms, the 
so-called block-diagonal matrices. 

For  n = 2m, 

-4 o O 

f ~  � 9  (2�9 

or, for n = 2m + 1, 

0 
- 4  I 

f= 

�9 

4 
1 

0 0 

0 ~"  0 

- 4 "  0 0 

0 0 0 

(2.36) 

where ~l, 42 . . . .  , ~"  are real numbers�9 In order to find them, we need to 
solve a secular equation for f ,  

d e t ( l ~ I . - f ) = l a ~ + a , ( f ) p n - 2 + a 2 ( f ) l a " - 2 + .  �9 �9 (2�9 

In = ( (~j)i,j= 1,2 ...... 

The coefficients at, a2 . . . .  are invariant with respect to an action of  the 
group O(n) [SO(n)] and they are functions of  ~1 . . . .  , ~". Thus, in the case 
of  a compact semisimple Lie group the skew-symmetric tensor kob on G is 
defined as follows: 

k,,b(g) = b" f,,'b' U"',,(g) Ub'b(g) 

where b is a constant real factor and ( f o b ) = f i s  given by 

(2.38) 

f = h  r 

0 1 

-1 0 

-~:~ 0 

�9 

�9 

~176 

0 

- ~ " - 1  

A 

0 

(2.39) 



Nonsymmetric Kaluza-Klein Theory in EM Case 631 

for n = 2m, or 

j T = A r  

0 1 

- 1  0 

- r  0 

�9 

~ 1 7 6 1 7 6  

0 
~ 4  m -  1 

�9 

A 

~ m - -  ] 

0 

0 

(2.39a) 

for  n = 2m + 1. 
Supposing  that  hab ~- diag(~,l, X2 . . . . .  2~,), where n = 2m or  n = 2m + 1, 

one gets 

lob(e) = A r 

for  n = 2m or 

Z1 
- ( ~  

I,,b( e) = A r 

"i, r 

( l  ;t2 
~l, 3 4 2 

- 4  2 Z4 

... 

�9 

/~2m -- 1 4 m 

- ( "  X2,. 

A = A T r ( e ) A  (2.39*) 

E 
l 

~3 ~2 

�9 

�9 

" ~  

~ 2 m -  1 
- -G m 

4 
m 

~2m 

~t2m + l 

A = A rT(e)A 

(2 .39a , )  

for  n = 2 m + l .  
Moreover ,  if G is compac t ,  we have ~ ;=  ;t, i - -  1, 2 . . . .  , n, and  ,1, < 0. 

This  is because any  bi- invar iant  symmetr ic  tensor  is p ropor t iona l  to the 
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Killing-Cartan tensor. In particular, the Tr tensor commonly used in Yang- 
Mills theory is proportional to hab. Thus, hab = ,~.(Tr)ab = ;~gob, ~ < 0. [For a 
particular normalization of generators, Tr({X~, Xb } ) = 26ab.] Let us remark 
that, in general, if kab(e) and h,,b commute (thus, for the moment, I do not 
suppose that G is compact), we have lab(e) = (A-m'[(e)A)ab, where AeGl  (n, ~)  
and lab(g) = Ua'a(g) Ub'b(g)(A-'T( e)A)a,b , �9 

One can say, of course, that kab tensors are defined with more arbitrari- 
ness than are bi-invariant, symmetric tensors. This is because k is only right- 
invariant. 

Let us notice that 

f~b=kab(g) (2.40) 

(~ is the unit element of G) and 

Rg, kab (g) = k,b(gg') = kcd(g) U~a)(g') Udb(g ') (2.41) 
where g, g' e G. 

In the case of G = SO(3), kab is unique up to an isometry of the Riemann- 
ian manifold with the bi-invariant tensor as a metric tensor and a constant 
factor. This suggests that the kab tensor given in the form (2.15)-(2.16) and 
(2.31)-(2.32) is an analogue of the Killing-Cartan tensor for kab (skew- 
symmetric). Moreover, the vector f can be transformed by an orthogonal 
[O(n)] transformation into 

(0, 0 . . . .  , +LI f l l )  
n times (2.42) 

Thus, one gets 

kab(g)= b c b c' " C~,bfc' U~, (g) 

where b is a constant factor and 

(2.43) 

o o t ( 0 , 0 , . . . ,  1) I (2.44) 
( f  c') = f  = ,, times 

Thus, we can write k in a more compact form 

k(A ,  B ) ( g ) = b  . h([A, B], Adgf  ~ (2.45) 

where A = AaX,,, B =  BaXa. 
Using the bi-invariancy of the Killing-Cartan tensor, one can write 

k(A ,  B)(g)  = b " h(Adg-,[A, B], f0)  (2.45a) 

Moreover, if there is ~ G  such that ~2 =g,  we get 

k(A,  B)(g 2) = b .  h(Ad~, [A, B], Ad~f  ~ (2.46) 
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We find an interpretation of  the factor b for K given by formulas 
(2.45)-(2.46). 

We get 

Thus, we have 

k,,bk "b = haa'hbb'kabka,b, = b 2 IlAdgf~ 2 = b 2 (2.47) 

b = :t:(k,,b k "b) I/2 (2.48) 

Finally, let us notice that we can repeat the considerations changing right 
(left)-invariant to left (right)-invariant in all places. In this case we can 
consider a left-invariant 2-form k and a left-invariant nonsymmetric tensor 
on a Lie group G. 

3. T H E  NONSYMMETRIC METRIZATION OF T H E  BUNDLE _P 

Let us introduce the principal fiber bundle _P over the space-time E with 
the structural group G and with the projection Jr. Let us suppose that (E, g) is 
a manifold with a nonsymmetric metric tensor of  the signature ( - ,  , , +), 

g~ v = g(~ v) + gtt, ~1 (3.1) 

Let us introduce a natural frame on _P, 

0 A = (rc*(O~), 0" = ~CO"), Z=cons t  (3.2) 

It is convenient to introduce the following notations. Capital Latin indices 
A, B, C run over I, 2, 3 , . . . ,  n + 4, n = dim G. Lower case Greek indices take 
the values a, fl, ~,, ~ = 1, 2, 3, 4 and lower case Latin cases a, b, c, d =  5, 
6 . . . . .  n + 4. The symbol bar over 0 ~ and other quantities indicates that 
these quantities are defined on E. 

It is easy to see that the existence of the nonsymmetric metric on E is 
equivalent to introducing two independent geometrical quantities on E, 

~=g~,O ~ | 0 '  = g(~.)~7 ~ | O '  (3.3) 

g_ = g~, 0~ ^ 0~ = gt~,l ~o ^ ~ ,  (3.4) 

i.e., the symmetric metric tensor ~ on E and 2-form g. On the group G 
we can introduce a bi-invariant symmetric tensor called-the Killing-Cartan 
tensor, 

h(A ,  B ) =  Tr(Ad5 o Ad~) (3.5) 

where Ad~ (C )=  [A, C] (it is tangent to Ad, i.e., it is an "infinitesimal" Ad 
transformation). It is easy to see that 

h(A ,  B ) = h a b A " '  B b (3.6) 
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where 

h,,6 = CC,,aC%c , hab = hb,, A = A"X,,, B = BaX,  

This tensor is distinguished by the group structure, but there are of  course 
other bi-invariant tensors on G. Normally, it is supposed that G is semi- 
simple. This means that det(h,b)r  In this construction we use l(,b)= hob 
(the bi-invariant tensor on G) in order to get a proper limit (i.e., the non- 
Abelian Kaluza-Klein theory) for p = 0. 

For  a natural 2-form k on G, or a natural skew-symmetric right-invari- 
ant tensor, we choose k described in Section 2; k is zero for U(1). Let us 
turn to the nonsymmetric natural metrization of  _P. Let us suppose that 

~(X, Y)=~,(lr'X, gr 'Y)+~)p2h(co(X) ,  co(Y))  (3.7) 

r_(x, Y) = g_(Tr'x, rc' Y) + p,~2p2k(co(x), co(y)) (3.8) 

/1 = const and its dimensionless, X, Y~Tan(_P), and p = p ( x )  is a scalar field 
defined on E. The formula (3.7) was introduced by A. Trautman (in the 
case with p =  1) for the symmetric natural metrization of  _P and it was used 
to construct the Kaluza-Klein theory for U(1) and non-Abelian generaliza- 
tions of  this theory. It is easy to see that 

~/ = g*g  @ p2habOa @ 0 b (3.9) 

~_ "= l'12*g-I- llp2kabO a A 0 b (3.10) 

o r  

(3.11) 

(3.12) 

For  

7AB = 7(AB) + ~'[AB] 

one easily gets 



Nonsymmetric Kaluza-Kiein Theory in EM Case 635 

where lab=h,,b+pkab. The tensor ~'As has this simple form in the natural 
frame on P, U A. This frame is unholonomicai, because 

dOO=~ (H".vO ~ ̂  0 ~ -  1 --~ C~b~O b ̂  0 ~) ~0 (3.14) 

7' is invariant with respect to the right-action of  the group on P. In the case 
with k,,b = 0 we have with k,,b = 0 we have 

~, - { g ~  
Ae-~ O I pEOh,,~) (3.15) 

For  the electromagnetic case [G=U(1)]  one easily finds 

_ {g,~ 

Now let us take a section e: E ~ _P and attach to it a frame v ~, a =  
5, 6 . . . .  , n + 4, selecting X"  = const on a fiber in such a way that e is given 
by the condition e ' v " = 0  and the fundamental fields ~ such that v~(~'p)= 
~g satisfy [(b, ~'o] = (1/~)CCab(c. 

Thus, we have 

1 co = -  v~ + zc*(A~. On)X. 

where 

e'co = A = A~  OUXa 

In this frame the tensor takes the form 

yAs=(g,~ +'~2pzI~bA~A~ ~P21cbA; ] 
\ ~p21,~AC, pZl~b J 

where 

(3.17) 

lab = hab q- ]2 ]Cab 

This frame is also unholonomic. One easily finds 

do "=-1  C"bcO b A O c (3.18) 
2~ 

The nonsymmetric theory of  gravitation uses the nonsymmetric metric g~v 
such that 

gu v g ~  = g~ ,g  ~ = 6 ' ,  (3.19) 
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where the order of  indices is important. If  G is semisimple and kab = 0, 

lab = h,,b, det(h~) 4:0 

and 

h i.br ~ (3.20) a b r l  - -  o a 

Thus, one easily finds in this case 

Y Ac 7' Bc = y cA T cs = t~,~ (3.21) 

where the order of  indices is important. We have the same for the electro- 
magnetic case [G=U(1)] .  In general, if det(/,b) ~0 ,  then 

to~ t "~ = t J "  = ~ (3.22) 

where the order of  indices is important. From (3.22) we have (3.21) for the 
general nonsymmetric metric ~,. 

It is easy to see that 

~ ' ( g ) ?  = ? 

~ ' ( g )  ~ = _~ 
(3.23) 

and ~'AB is an invariant tensor with respect to the right-action of  the group 
G o n  _P. 

In the case of any Abelian group the condition (3.23) is stronger and 
we get that )'AR is bi-invariant. Thus, in the case of G =  U(1) (electromagnetic 
case) 

~5 ~ = 0--- ~5~ (3.24) 

where ~A is a dual base 

A , B = I , 2 , 3 , 4 , 5 ,  

oA(~.) = 6g (3.25) 

~A = ( ~ ,  ~5) (3.26) 

Let us come back to the connection o3 ~ defined on the group G. For  a 
typical fiber that is diffeomorphic to G, we can define r on every fiber 
F~ ~-G, x~E. Due to a local trivialization of the bundle _P, we can define ~3 ~b 
on every set U • G, where U c  E and is open. Thus, we get a linear connection 
on P such that 

ffg "4B = ( Oo l _(1/,~C,,bcOC ) (3.27) 

defined in a frame 0 A = (~r*(0~), 0n), where 0~ is a frame on E and 0" is a 
horizontal lift base. 
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This connection can be examined in a systematic way. Let us introduce 
a metric on P in the following way: 

p= rc*q G h~bO" | 0 b (3.28) 

where q =  rtuv0u @ 0 ~ is a Minkowski tensor and hab is a Killing-Cartan 
tensor on G. We get 

_ { q ,b~O_~ p A S = ( ~ ]  (3.29) 
PAs-~ 0 ] h~bJ and \ 0 I h ~]  

The connection 03 As can be defined as 

0a ). 
(3.27a) 

where o~ "t3 is a trivial connection on the Minkowski space, 03 ~b is the connec- 
tion defined in Section 2.2, and ~bx is a diffeomorphism ~Px: Fx ~ G, xeU. 

It is easy to check that 

/')pAs = 0 =/')p As (3.30) 

where/3 is an exterior covariant differential with respect to 03 As. One can 
easily calculate the torsion for 03AB, 

)o = 2 H  . (3.31a) uv pv 

^ a  l 
Q b~=-~ Cabc (3.31b) 

and the curvature tensor 

Rab,u v = I~Xb H"u v (3.32) 

(the remaining torsion and curvature components are zero). 
The connection COAB is neither flat nor torsionless. Moreover, it is still 

metric as a connection 03"b from Section 2.2. 
The covariant differentiation with respect to this connection is con- 

nected to the right-action of the group G on P. Thus, the condition of the 
right-invariance of the p-form EA'"A~8,.,.8,,, on P is equivalent to 

fTaE A'A'B~...s,,, = 0 (3.33) 

where Vk is a covariant derivative with respect to 03As in vertical directions 
on P. This means right-invariance of E. This can be written 

Vver(x)E = 0 (3.33a) 
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ver is understood in the sense of co. We have 

~ ' ( g ) E = E  (3.34) 

where g~G and 

E = (E A''A'B''n") = (pS'SipS2VL.. pS'n"'EA''A'm...B;, ) 

For a connection co on a bundle P, of curvature f~, one gets 

~kO) = ~k~ = 0 (3.34*) 

Thus, we can rewrite equation (3.23) 

~_y = V~f =0  (3.35) 

This means that 

o r  

Kalinowski 

~ver(.~) 7 = 0 (3.36a) 

For every linear connection coAs defined on P compatible in some sense with 
TAs we get 

@*(g) ooAs = AdgogAs (3.37) 

which means that coAs is right-invariant with respect to the right-action of 
the group G on P. We say the same for the 2-form of torsion and the 2-form 
of curvature derived for ogAs, i.e., 

(za~qA B = ~,| = 0 (3.38) 

The curvature scalar is invariant with respect to the right-action of the group 
G o n  P, 

O=~aR=XaR=(~R  (3.39) 

The condition (3.37) is the same as in the classical Kaluza-Klein (Jordan- 
Thiry) theory in the non-Abelian case. A parallel transport with respect to 
the connection DAB means simply a right-action of the group G on P. 

Our subject of investigation consists in looking for a generalization of 
the geometry from Einstein's unified field theory (the so-called Einstein- 
Kaufman theory (4'5'61)) defined on P, i.e., for a connection coAs such that 

DyAB = yAoQD~O e (3.40) 

where D is the exterior, covariant differential with respect to the connection 
09AB and QDB~ is the tensor for coAe. We suppose that this connection is 
right-invariant with respect to the right-action of the group G. 

VaTAs=O (3.36) 
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We can write equations (3.37)-(3.39) for the torsion, curvature, and 
scalar of curvature for C0AB. In this way we consider the Einstein-Kaufman 
G-structure on the bundle of  linear frames over the manifold P (i.e., a right 
G-structure). 

We can repeat all the considerations changing right (left)-invariant into 
left (right)-invariant in all places. 

In this section we define coAs as a collection of 1-forms defined on the 
manifold _P (a gauge bundle manifold) and we choose for c0As a lift horizon- 
tal frame (connected to the connection c0 on the gauge bundle). 

The collection of 1-forms co'~s becomes a linear connection on _P iff it 
satisfies the following transformation properties: 

co'A'~=E-IA'~(p)coAnz-JSs'(p)--E-IA'4(p)dZAs,(p) (3.41) 

where 

and 

Z(p) ~ GL(n + 4, ~), peUpCP 

OC=Zcc,(p)O'C' (3.42) 

is a simultaneous transformation propery of a frame. Having COAB with 
transformation properties (3.41)-(3.42), we can lift it on a principal fiber 
bundle of frames over P with the structural group GL(n + 4, ~), getting a 
1-form of connection cO, 

cO~=AdGL~,+4.m(gp')[II*(CoAsXnA)--gy' dgp] (3.43) 

where H is a projection defined on this principal fiber bundle of frames and 

gp: zelI-I(Up) ~ gp(Z) = (prGl.(,+4,R)Wp(z)) -I 

~Gl(n +4, ~), p~UpcP 

pr means a projection on Gl (n + 4, ~) in a local trivialization of the bundle 
P", V is an action of GL(n + 4, R) on a principal fiber bundle of  frames over 
P, qJ ~ Gl (n + 4, ~) • P" ~ P", and qSp is defined for G1 (n q- 4, R) • Up. In 
this way we have an action of GL(n + 4, R) on the bundle and for cO, 

�9 *(g)CO = Ad~L(,+4.m(g- ')o3 (3.44) 

XAs are generators of the Lie algebra gl(n+4, ~) of GL(n+4, ~) and 
g~Gl(n+4, R). For a soldering form 0 A one gets 

O A =gpI-I*(O A) (3.45) 
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Taking any two sections of the principal fiber bundle of P" frames E and F 
such that 

E* ~ = (-DtA'B'XB' A' 

F* ~ = CoABXB,4 
(3.46) 

E*~  "~ = 0 ,A 
F.~A = 0A (3.47) 

one gets the transformation properties (3.41) and (3.42). In such a way that 

E(p) = F(p)Z(p) (3.48) 

equation (3.40) can be rewritten in a more compact form 

V7 = S (3.49) 

where 

S(X, Y, Z ) =  [Tr( 7 | Q)](X, Y, Z ) = •  ~,(X, e ~)OA( Q( Y, Z) ) 
A 

Q( Y, z ) = - Q ( Z ,  Y) 

is the torsion of the connection o5, X, Y, Z are contravariant vector fields; 
and 0 ~ and eB, 0~(eB)= ~An, are dual bases, 

Or, in a different form, 

V~ 7(X, r3 = S(X, r, z )  (3.50) 

V is a covariant derivative with respect to the connection c3 on the fiber 
bundle of frames. 

Moreover, now we consider 7, Q, X, Y, z ,  etc., as geometrical objects 
living on appropriate associated fiber bundles to the fiber bundle of frames. 
The condition (3.50) gives us the Einstein-Kaufman connection o5 on the 
principal fiber bundle of frames over P. For o5 right-invariant with respect 
to the action of a group G on this bundle of frames (lifted to this bundle 
from P), the condition (3.50) is also right-invariant. 

4. FORMULATION OF THE NONSYMMETRIC 
JORDAN-THIRY THEORY 

Let _P be the principal fiber bundle with the structural group G = U(1) 
over space-time E with a projection rc and let us define on this bundle a 
connection a. We call this bundle an electromagnetic bundle and a an 
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electromagnetic connection. For the electromagnetic bundle _P w e  can specify 
all quantities introduced in Sections 1-3. We have 

n = d a  =�89 ~ ̂  0 v) 

where 

F . v = ~ A ~ - c g ~ A u ,  e*a = A ~ O  ~ 

and e is a local section of _P. Here A u is the four-potential of the electro- 
magnetic field and F.~ is its strength. The Bianchi identity is 

d ~  = 0 (4..) 

and due to this, the four-potential exists. It is of course the first Maxwell 
equation. 

On space-time E we define a nonsymmetric metric tensor g ~  such that 

gap = gr + g[a,l 
(4.1) 

g~pg~ = go~g ~r = g~ 

where the order of indices is important. We define also on E two connections 
rb~p and W~,, 

c3~/~ = F"/j~O r (4.2) 

and 

where 

if= w,o,=~ ( f f '~ -  ff'%~)0~ 

For the connection o3~p we suppose the following conditions: 

(4.3) 

(4.4) 
Q%o(r ~) =0 

where b is the exterior covariant derivative with respect to o3 ~ and (~p~(I =) 
is the torsion of  o3u~. 

Thus, we have on the space-time E all the quantities from N G T .  (34'63"64) 

Now let us turn to the natural nonsymmetric metrization of the bundle P. 
According to Section 1, we have 

y = z c * ~ - p 2 0 5 |  5 �9 -~ p20S 0 s = rc (gr | 0 p) - | 
(4.5) 

y = ~*g = rc*(gi~pl0 ~ A 0~) 
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where 0 5= ~.a. From the classical Kaluza-Klein theory we know that (16) ~.= 
2 (we work with an appropriate system of units), and we have 

7AB=(g;P I _ ; ~  ) (4.6) 

The tensor 7An has this shape in a lift horizontal base, which is of course 
nonholonomic. We can find it in a holonomic system of coordinates. Let us 
take a section e: E ~ P and attach to it a coordinate x 5, selecting x ~ = const 
on the fiber in such a way that e is given by the condition x 5= 0 and ~5 = 
c3/Ox 5. Then we have e* dx 5= 0 and 

1 
a = - d x S  + tr*(AuO~), where A=AuOU =e*a. 

A 

In this coordinate system the tensor 7/takes the form 

),~s= ( ga; - ZZP2AaAa I -'~02A'~ (4.6a1 
\ - --2~P2Ap I _p2 ] 

In order to have the correct dimension of a four-potential we should rather 
write e*a = (q/hc)A = pA, where q is an elementary charge and h is Planck's 
constant. The same is true for the curvature of connection on the electro- 
magnetic bundle ~ = ~p to* (F), i , F=~F~vO ^ 0 ~. Moreover, it can be absorbed 
by a constant A.. 

Now we define on P a connection c0As bi-invariant with respect to the 
action of the group U(1) on P, such that 

Dy A + e- = D y e s -  7 ADQ~ ) 0 c = 0 
(4.7) 

O3AB= FABcOC 

D is the exterior covariant derivative with respect to the connection coAs, 
and Q~ is the tensor of torsion for the connection was. 

After some calculations one finds 

A [ Jr*(cb~)+P2gaaH~t30s I HprOr+(1/p)g"ag'(ra)P'rO'~ 
O3 

n=~p2g"~(Hrp-2Fra)Or + p~,(r")p,rOS [ (l/p)gsr~,(a~)p,~O v ] 

(4.8) 

where fg(~a) is the inverse tensor for g(~p), i.e., ~(~8). g(~a)= 3aa, and Hra is 
a tensor defined on E such that 

ga~gT~H~a + g~ag~rH~ = 2g~ag~rFp~ (4.9) 

We define on P a second connection such that 

wA A 4 o A I~ (4.10) B=O3 B--~OB 
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where l~ is defined in (4.3). It is easy to see that if" is a horizontal 1-form 

if '= hor if" (4.11) 

(horizontality is understood in the sense of the connection a defined on the 
bundle _P). Thus, we have on P all five-dimensional analogues of the quanti- 
ties from Moffat's theory of gravitation i.e., WAB, COAB, and 7'AB. ~63-65) 

They are also analogues to the quantities from Einstein's unified field 
theory. 7/AB, COA.,, and WA.  are E(l)-invariant. Thus, we get the Einstein- 
Kaufman U(I) structure. 

5. GEODETIC EQUATION 

Let us write an equation for geodesics F c P with respect to the connec- 
tion coAs on _P. 

g u  u = 0 
(5.1) 

u BV Bu A = 0 

where u [uA(t)] is a tangent vector to the geodesic line and V means a 
covariant derivative with respect to the connection C0AB. Using (4.8), one 
easily finds 

/3u ~ 
- -+uSp2(g~U(Ha~-2Fp~)+gU~H~,~)u~+(uS)  2. p .  fg(P~)p,p =0 (5.2) 

dt 

d.'+2u   +p2Hj..=O (5.3) 
dt p at 

where D/dt  means covariant derivative with respect to o3~p along a curve to 
which u(t) is tangent and 

d o . .  p (5.4) 
dt - t , ,p. 

One easily transforms (5.3) into 

d (2uSp2) + �89 J = 0 
dt 

(5.5) 

It is easy to see that (5.5) has a first integral 

2uSp2 =const  iff H y ~ = - H ~ r  (5.6) 

In the Kaluza-Klein theory or in the Jordan-Thiry theory, 2uSp 2 has an 
interpretation as q/mo for a test particle, where q is the charge and m0 is the 
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rest mass of the test particle. This first integral means that q/mo does not 
change during the movement of the test particle. Finally we get 

at mo 8 ~,rnoJ ~' / p~ /a  =0  
(5.7) 

q 
- const 

m0 

Thus, we get a Lorentz force term in the equation of motion for a test 
particle. This term really differs from the analogous term in the Kaluza- 
Klein theory. If  the metric is symmetric, we get the classical Lorentz force 
term. We also obtain an additional term 

_1 ( q 12~(,,~)(1~1 (5.8) 

which expresses the interaction of the test particle with the scalar field p. If 
p =  const, this term vanishes. 

Equations (5.7) are defined on an electromagnetic bundle _P. The equa- 
tions of motion for a test particle should be defined on E. This can be easily 
achieved by taking a local section of _P. For U(I)  Abelian, F,~ and H,~ are 
well defined on E and we get exactly equation (5.7). 

One can examine geodetic equations in a more geometrical way, i.e., 

hor(V,u) = ver(V,u) = 0 (5.9) 

We get 

hor(Vhor(~(o)hor(u(t)) + V~,~c..))hor(u(t)) 

+ V~(~(t))ver(u(t)) + Vho~(.(O)ver(u(t))) = 0 
(5.10) 

ver(Vhor(u(mver(u(t)) + Vv~r(,,))ver(u(t)) 

+ Vhor(,,))ver(u(t)) + Vver(u(,))hor(u(t))) = 0 

Demanding that equation (5.10) possesses the first integral of motion 

v =f(ver(u)) = const (5.11) 

wheref is  a linear function of its argument, we get, according to the previous 
investigations, 

dv 
- - = 0  on F (5.12) 
dt 

and f(y) = 2pZy. 
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Finally, it is of interest to mention that the exponential map on (P, y), 
exp: T(_P) ~ P [expp: Yane(P) ~ _P for each p e P ,  expp(v)=Fo(l),  where 
Fo(1) is an endpoint of  a segment of a geodesic through p whose tangent at 
_P is v for an arc parameter equal to 1], defines a normal coordinate system. 
Choosing an orthonormal basis {CA} for Tanp(_P), we define a coordinate 
system in a neighborhood o f p  by assigning to the point expe(~ xAeA) the 
coordinates (x ', x 2, x 3, x 4, xS). We call them normal coordinates. Usually 
in such a case one defines the function 

T s  ~ = (x  ~)~ - (x~)  ~ -  (x~) ~ -  ( x ' ) :  - (x~) ~ 

The gradient of s is O/Os, where (grad f ,  X)=df(X) ,  XE T(P). Using this 
function, we can define the so-called polar coordinates s, 01, 02, 03, 04 
(which are defined like the above normal coordinates). It is easy to see that 
the physical interpretation of the normal coordinates is as follows. They are 
the initial velocities and electric charges of test particles in such a way that 
x 5= (1/2p2)(q/mo) and x "=  u~'. Since rays through the origin are geodesics, 
normal coordinates have the property that V,vox~(O/Ox A) =0. Thus, (Vo 0/ 
0x A) It, = 0. For these reasons normal coordinates are convenient to use. In 
the case of spacelike geodesics our interpretation breaks down, because they 
correspond to tachyon trajectories. Nonetheless, we can maintain this by 
supposing that ug corresponds to the initial velocity of a tachyon as well. 

6. G E O M E T R Y  O N  THE M A N I F O L D  P 

Let us turn to the calculation of the torsion for o~As, 

OA(F) =DO A 

One easily gets 

O ~ ( r )  = 0 ~ ( 1  ~) 

Q~5~(F) = - Q~5(F)  = 2p2(g~)Hs: - g~rFrp) 

Q5 ~(F) = 2 (Fur -  H.~) 

2 
QSsp( r )  = _QSps(F) = -  gta~l~(~8)p,~ 

P 

Let us define a tensor Kay such that 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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Now we have 

QSa~(r) = -2Ka:, (6.6) 

We find later a physical interpretation of this tensor. Now we calculate a 
2-form of curvature for the connection co~n. We have 

['~.4~(r ) = df.oAB -1- (.Oat ^ (.o Cn (6.7) 

One easily gets, using (4.8) and (6.7), 

~a#(F ) = fia#(l=) + p2 [gaaH~# Fuv-gar(Htv l r l -  2F[vlrl)HloioJl]O u A 0 v 

+ [Vu(p2g~'Hatj) + PHl~.~fra)p, r 

+ pg~(Hu~-2Fv~)gt~a~.(~a)p,~]O u A 0 s 

a s (  r ) = [Vl. Hvl, + 1 H r a O r ( r )  + 1 goafg(.~)p, rvv 
L 2 p " 

n % ( r )  = 

~ss (F  ) = 

( 6 . 8 a )  

+ 1  7 
gat,~'a)pl~l~pL~/O ~ _  _ AO 

p j 

+ [v~(  l g/sy~,w'S~ p.,,) + p2g~r H,~ts Hr~, 

- 2F~p)] + ~p g ( H , e -  2Fre)O,v(F) 

+ P~.~r~)p.rFv v + pg~13gatv~.(~e)p,l<(H.]~ - 2F~,le) } 0 v A 0" 

+ [Vu(p~.(r")p,r) + p4ga~gr'Har(Ht3 ~ - 2Ft3v) 

- g~.~(r~)~.(Va)p.rp, v]O~ A 0 s (6.8C) 

I -  [1 (,,a) "~ 1 
Vt, tpgiaiv,~. P,,,)+pg,rg':a)P.,,O_.;~((') 

- P 2 H ' [ ~ g e " ( H . I . -  ul'~) ~atuglrWl~ ~; p,.k,.lzju A 0 ~ 

+ [p~rt~)p, r Hpu - pg(a~)p,,,(Hua - 2Fu e0] 0 5 A 0 u (6.8d) 
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where ff2~,(F) is the 2-form of curvature of the connection o5~,  is the 
covariant derivative with respect to o3~p, and 0~p~(I =) is the tensor of torsion 
for o5~.  One easily reads from (6.8a)-(6.8d) the tensor of curvature 
for coas. We have 

R~m,~ =/~am, ~ + 2p2[gS~Hap F~ ~ -  g~ r(Ht~l~ I - 2Ft~lrp)Hl~t~l] (6.9a) 

R"p/,5 = - R ~ s u  

= Vu (p2ga~HaP) + PH~u g(r~)P,r + Pg~ ~(H~ ~ - 2Fp v)gp~fg~ (6.9b) 

RSe.,, = 2Vf. H,.Io + Hrl~Or,,,.(F) 

+2~( , , a )p , ,F~ , .+2= z.(,.a). H (6.9c) 
�9 - -  ~ 6 [ u ~  /a, lal IBlv] 

P P 

RSau5 = -RS#su 

R" s. v = 2Vv,[p2g'~e (Hvje - 2Fvlp)] 

+ p2g~l~(Hrt j - 2Frl3)Or,,~(F) + 2p~(r~)p,rFu~ 

+ 2pg"l~g~i~(~a)p.l~l(Hul~ - 2F, q~) (6.9e) 

Ras/,5 = -RUss,, 

= ~'. (2pfg(r")p,r) + p4ga"gra//~r(Hm, - 2F~.) - ga~,~~ p.,. 

5 - l - ( aa )  1 ~(as)  - y  R 5,,v=2V[u(pgialvlg P l a ) + p g a r g  p,~Q . v (F)  (6.9f) 

2 - -(aa)-(~y) 
- 2p2g'~'~H'~I"(H*'I" - 2Full) + 7 ga[u girl ~lg g PI~ Pro (6.9g) 

RSss~, = -RSs, ,s  = -p~,("a) pl,,( Hva - 2F, a) + p~(r~ p, r HI~ ~, (6.9h) 

In Section 4 we defined the connection Was in terms of co as. Let us calculate 
the two-form of curvature for Wa~, 

We have 

f~aB(W) = d W a A +  W a c a  w C s  (6.1o/ 

n a ( w ) = n % ( r )  . a -  0 .  -~8sWr , , . v  I ^ 0 v (6.11) 
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One easily finds the relations between the curvature tensors for WAs 

and coAn. 
8 a R'~t~uv( W ) =  Raa~,v(F ) - ~ t 3  W[u,vl (6.12a) 

Rssu , , (W)=R55m,(F)  8 - ~ Wtu,~l (6.12b) 

R~t~s~(W) = R~as~(F) (6.12c) 

RS~s(W) = Rst~vs(F) (6.12d) 

Now we pass to the calculation of the contraction of RABcv(F), 

A sc(F) = R A BCA (F) (6.13) 

and the Ricci scalar 

1 
A (I") = r A cA A.( r  ) = g a ' A a , ( r  ) - ) 5  A,~ (6.14) 

After some calculations one easily gets 

A(F) = A(F) + p2[(g[U VlF.v)2 _ H,WF, w] 

+ ga.[~u(1 gt~a~'~e)p,~)] + pl-- z V.(p~.'r~)p,r) (6.15) 

Now we can calculate the Moffat-Ricci curvature scalar for the con- 
nection ~0AB : 

R(F ) = 7"C[RA.cA (F) + �89 RAAsc(F )l (6.16) 

One easily gets after some calculations 

x/~ R(F) = x ~  P{/~(F) + p2[2(gt"VlF.~) 2 H"I' F,~,] 

1 l + 8. K" (6.17) +)5  g [~lga ~fg(~a)p,~ p,~ ) 

where 

/~(F) is the Moffat-Ricci curvature scalar for the connection e3 ~" on E, 

H a" = ga.gr~'Har ' H~r = - H r t  3 (6.18) 
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and 

gs~gT~H~ + g~g~rH~ = 2g,,ag~Fpr (6.19) 

Now we are able to write q~  R(W), where R(W) is the Moffat-Ricci curva- 
ture scalar for the connection WAs on P, and we easily find 

.4~ R(W) = ~ p{/~(if') + p212(g[~ VlF~ v) 2 - H~UF~,] 

• 
g~V~Jgav~(~)p.~ p.~} + ~ K ~ (6.20) +p2 

where R(W) is the Moffat-Ricci curvature scalar for the connection l}'~p 
on E. It is easy to see that from the variational principle point of view it is 
enough to consider in the place of ,f~ R(W) only 

B(W) = ~ p{/~(I~) + p2[2(gt" V]F, v)2_ H~;,F~,] 

g[~")gs~(~)p,~ p,~} (6.21) 
1 

+p-5 

The four-divergence O,K" (an exact form) plays role in topological 
considerations. 

Finally let us note some identities for F;,~ and H ~ .  One gets from 
equation (1.9). 

g~ Vl H~ ~ = gE, ~3 F~ ~ (6.22) 

g~'g/3~H~,H~ =ga~ (6.23) 

g O-Vg,~. H,~u F. v + g;"~g V~ Fv ,. = 2g"'~g V~ v F,o (6.24) 

7. CONFORMAL TRANSFORMATION OF gj, v. 
TRANSFORMATION OF THE SCALAR FIELD p 

In Section 3.4 we get the Moffat-Ricci curvature scalar for the connec- 
tion WAB on _P. The appropriate scalar density on _P differs from qr~ B(W) 
[see equation (6.21)] only by the exact form (full divergence for the vector 
K~'). We will consider ~f~ B(W) as the Lagrangian density for the gravita- 
tional, electromagnetic, and scalar fields. Bergrnann iS~ considers a general 
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Lagrangian of this type (see Ref. 50, p. 26, formula [1.1]). Our Lagrangian 
has of  course the determined functions jS, f2, f3, f4. It is easy to see that 

1 
f~(P) =P, fz(P) =p3, f3(P) = - ,  J~(p) = 0 (7.1) 

P 

In equation (6.21) we get also a special form of the Lagrangian for the scalar 
field p. It is 

~ ( p )  = pl- 3 g t ~ l g a ~ ) p ,  u p,~ (7.2) 

It vanishes if the skew-symmetric part of  the metric is zero. Thus, the scalar 
field will propagate if the skew-symmetric part of the metric is not zero. 

Let us transform p and g, v in the way suggested in Ref. 50" 

p = e -~" (7.3) 

1 
g~v ~ e'Vg~ ~ = -  gu~ (7.4) 

P 

(conformal transformation of  gu~)- After simple calculations one obtains 

4 7  B ( w )  = { R ( w )  + e H~ 
+ gt, ~lg~ ~(~)~F uV,~ } (7.5) 

Thus, we have the Lagrangian density in our theory 

L(ITV, g,~,Au,~F)=,f-~-gR(W)+87re-3'VL,m+Lsr (7.6) 

where 

and 

_/-Zg. 
t e m  - -  8 - -~  ~ [ 2 ( g  [/t V]Fp v) 2 - Hal.tEal.t] (7.7) 

(7.8) 

This is of  course a scalar-tensor theory of  gravitation with a nonsymmetric 
metric unified with electromagnetism. The scalar field propagates only if the 
skew-symmetric part of  the metric is not zero. Otherwise, ~F is not a dynam- 
ical field. In the next section we will find an interpretation of  this field. 

gtV, l = ~ gtVU] (7.9) 
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8. T H E  V A R I A T I O N A L  P R I N C I P L E  A N D  F I E L D  E Q U A T I O N S - - -  
I N T E R P R E T A T I O N S  A N D  C O N C L U S I O N S  

Let us define the Palatini variational principle on the manifold P 
for R(W),  

8 fv  R( W)x/-7 dsX = O, z=P (8.1) 

(8.7) 

dx ~ 

6Jr e_3,e ~(,em = 0 

where 

~" = det(TAB) = _p2 det(g~p) = _gp2 

It is easy to see that (8.1) is equivalent to the following: 

6 f~r ~ d4X{R(ITr + e-3V[2(gt~VlF~'v)2 - H'WF'w] 

+ gtV'Ig~fg(~a)W,~W ~ } = 0 (8.2) 

where U c E. We vary with respect to the independent quantities ff'~ar, g~ v, 
A . ,  and ~u. After some calculations we easily get 

eva e~eal 

R~(if') - �89 R ( w )  = 8JrK[ ~ ,  + T~a('e) (8.3) 

g ,  v ~ - gr162 - gu r I~r = 0 (8 .4 )  

gt~l ~=0 (8.5) 

We can rewrite equation (8.5) in the form 

~vgtU ~1 = 0 (8.5a) 

O~(H ~') = 2gt~P]c~p(gtU ~IF~ ~) - 3 0 t ~ ( H  P~ - 2gtP~](gtU ~)Fu v)) (8.6) 

We can write in place of 8~(H ou), ,,/~. ~z u/_Uu, and 

O2W 
(~(~,)_ gVUg~ ~ ( ~ a ) )  _ _  

Ox" Ox" 



652 

where 

Kalinowski 

om 1 
T~ a = ~ {g~pg~Ug~rH.. H ~  - 2g t~ VlF.v F~ a 

- �88 [H ~' VF~, ~ - 2(g [" ~F,, ~)2]} (8.8) 

is the energy-momentum tensor f01: the electromagnetic field in the non- 
symmetric Kaluza-Klein theory 

seal e 3 'e  

T ~ ( ~ I , )  - 
4re 

x [�89176 ~ + go~ag~,) (g~"gs~ - 6~)~o.,~F.r 

_ g , ,  (gt V,]g~ v~(~,~)u?,~.o,) ] (8.9) 

is the energy-momentum tensor for the scalar field W. In the calculations we 
used the following formulas for 5gr~ and 5~.("~): 

8g~v = -g~rg~o 5g ~r (8.10) 

5g (~8) = �89 (fg(~P)~,(~~ + g(~'~)g(~)go,~g~v) 5g ~'~ (8.11) 

seal 

It is easy to see that the trace of  T,,(q j )  is not zero, 

scal 

g .IJ T.l~(u? ) = _eSV /8zt(gt~Ulg6v~(~,~)W,~,W,~o) ~ 0  (8.12) 

We have 

and 

H~v = x/~gPVgr~Hpr , Hay = - H r l  ~ (8 .13 )  

- { a  } + � 8 9  F ~ r  = fl), Pr 

gaagr~ Hr~ + g,~gar Hpr = 2g~g~rF~r (8.14) 

We can rewrite equation (8.14) in a matrix notation, 

g (g -~ ) rH+  g r g - ~ H r =  2grg-1F (8.14a) 

where T means a matrix transposition. Equation (8.14) expresses the rela- 
tionship between tensors H ~  and F~a. 

It is well known from Einstein's unified field theory that equation (8.4) 
has the following solution: 
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where Q ~ r  is the torsion of the connection F, {~r} is the Christoffel symbol 
form for g~a), and 

Now we are able to interpret the quantities in our theory. First of all it is 
easy to see that H~ a plays the role of the second tensor of the electromagnetic 
strength (the so-called induction tensor) and equation (8.14)expresses the 
relationship between tensors Faa and H~ a. 

In the classical electrodynamics of continuous media t68) or in nonlinear 
electrodynamics t69) it is necessary to define both of these tensors. The first 
tensor, F~a, is built from (E, B) and the second, H,t~, from (D, H).  

If the metric g~a is symmetric, then Fro = H~p. Thus, it is interesting 
that the skew-symmetric part of the metric gt~m induces some kind of electro- 
magnetic polarization tensor of the vacuum. 

In the classical electrodynamics of continuous media ~66) and in nonlinear 
electrodynamics ~67) it is possible to define the electromagnetic polarization 
tensor of the continuous medium (classical electrodynamics) or the vacuum 
(nonlinear electrodynamics) called M~ a, 

H ~  = F~a - 4JrMap (8.15) 

It is easy to see that 

4trM~t~ = -K~p (8.16) 

[see (6.6)]. Thus, we get a geometrical interpretation of M~p. 

Qs~o(F) = 8rcM~p (8.17) 

The electromagnetic polarization induced by the skew-symmetric part of the 
metric g~uv~ is the torsion in the fifth dimension. This is in very good accord- 
ance with results from Refs. 16 and 68. The only difference is that in Refs. 
16 and 68 the electromagnetic polarization has its origin in external sources 
and (8.17) plays the role of the Caftan equation in the Kaluza-Klein theory 
with torsion. 

But this is not all. The skew-symmetric part of the metric gt~vl also 
changes the electromagnetic Lagrangian. 

1 [2(g~U VlF~ v)2 _ H~UFu,~] (8.18) 
~e,, = 8---~ 

In (8.18) we have a new term 2(gtUVlF,~) 2 which is an interaction between 
the skewon field and the electromagnetic field. This term vanishes if the 
metric is symmetric and is always nonnegative. 
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T h u s ,  classical electrodynamics in the nonsymmetric Kaluza-Klein 
theory will be different than in general relativity. 

The skew-symmetric part of the metric also induces a source for the 
electromagnetic field. In equation (8.6) we get a current. 

= - 2-~ gt~t~l O~(gtU ~]F~) (8. 19) 

which is conserved automatically modulo equation (8.5) 

(8.20) 

This current vanishes if the metric is symmetric. This is completely different 
from the classical Kaluza-Klein theory. ~ In the classical approach based 
on a symmetric metric on space-time one obtains the second Maxwell equa- 
tion in the vacuum. There is also an additional current induced by a scalar 
field W. We have for K 

K = e -3~r (8.21) 

Equation (8.21) expresses the relation between the scalar field W and the 
gravitational constant K. Simultaneously we get an interpretation of the 
scalar field W. It is connected to the gravitational "constant" K, which now 
can change in space and time according to equations (8.21) and (8.7). It is 
easy to see that if the symmetric part of the metric is zero, K is not a 
dynamical field and it is really a constant. In this way the scalar field p is 
also a constant. Thus, we get zero for the extra term in equation (5.7). In 
this way equation (5.7) becomes the ordinary equation of motion for a 
charged test particle in gravitational and electromagnetic fields. It is easy to 
see that equation (8.7) is more similar to the Klein-Gordon equation than 
to the wave equation: consider the term 

6Jr -3~, - (8.22) 

Only if 

,,t~em = 0 (8.23) 

do we get an analogue of the wave equation. It is equivalent to 

2(g[~ V)F~ v)2 = H,~,Fa,, (8.24) 

Thus, we get the equations for the gravitational field in the tensor-scalar 
theory with electromagnetic and scalar sources. Moreover, the tensoria! part 
of the gravitational potentials is not symmetric. These are equations (8.3) 
and (8.5). Equation (8.4) is a compatibility condition from Moffat's theory 
of gravitation. 
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Now we turn to the problem of the equivalence principle in our theory. 
It is well known (5~ that many scalar-tensor theories of gravitation do not 
satisfy the equivalence principle. They are in contradiction with the universal 
free fall of all bodies. This occurs of course iff scalar forces have long range. 
In this case the scalar field satisfies the wave equation. But fortunately this 
is not true in our case. Equation (8.7) is of the Klein-Gordon type rather 
than of the wave type. This suggests that our scalar forces obey Yukawa- 
type behavior and not Coulomb behavior. This means that our scalar forces 
are of short distance, i.e., 

W~I  
- e -'~r, a > 0 (8.25) 
r 

This means that if r ~ 0% W ~ 0 and 

K --* const (8.26) 

Thus, we get the unification of Moffat's theory of gravitation with electro- 
magnetism and scalar theory. This nonsymmetric version of the Jordan- 
Thiry theory combines gravitational theory and the electromagnetic Maxwell 
theory in a much stronger way than the classical Kaluza-Klein theory and 
the classical Jordan-Thiry theory. Simultaneously we get the possibility for 
changing the gravitational constant without violation of the equivalence 
principle. In our approach there exist "interference effects" between gravita- 
tion and electromagnetism which are absent in the classical approaches. 

1. A new term in the electromagnetic Lagrangian 

1 (gt~Vl G 02 
47r 

2. The existence of an electromagnetic polarization of the vacuum M 
which has a geometrical interpretation as a torsion in the fifth 
dimension 

3. An additional term for the Lorentz force term in the equation of 
motion for a test particle 

q grr~lHrt~U~ 
mo 

e m  

4. A new energy-momentum tensor T~ for the electromagnetic field 
with zero trace. 
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5. Sources for the electromagnetic field---conserved current 

6. An additional term in the equation of motion for a charged particle 

8 \ too/ \P /,a 

or in terms of 

1 2 

7. Propagation of the scalar uncharged field W (or p) [equation (8.7)] 
and a Lagrangian for W [see equation (7.8)] with an interaction 
term involving the electromagnetic field 

8 ~-e-3~ ~aem 

which plays a role similar to a mass term. 
8. An energy-momentum tensor for a scalar field with nonzero trace, 

which suggests that this field is massive. 
9. An interpretation of the scalar field as a gravitational "constant" 

g =  e-3~" 

10. Points 7-9 suggest that the scalar force is of short range. Thus, it 
does not violate the equivalence principle. It allows the gravitational 
"constant" to be really constant at long distances, and the addi- 
tional component in the equation of motion for a charged test 
particle (see point 6) goes to zero. 

All of these effects vanish if the skew-symmetric part of the metric is 
zero. We then get the classical results. 

Let us write in this section a general form of the Lagrangian, coming 
back to CGS units. We get 

8~rGN { 1 (,e)~) ,.~ = R(  I~ r ) "q'- 8 ~'(]/Z)2e-3W~e m q- [:"-  ,~scal (8.27) 
\~rr 

where 

&_ 2-f~N and A, la - 2 ( G N h ) ~ / 2  - 21r" (8.28) 
c 2 diq  ,/-dem 
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where l p l=(GNl i /C3)  I/2 is the Planck length and a e m = q 2 / h c  is the fine 
structure constant. 

Let us remark that we have three equivalent forms of the energy- 
momentum tensor for an electromagnetic field in our theory. 

Let us write them down: 

~ "  l {gr~g~pg~,Hp~,H~_2gtUHFuvF,~p 

1 , u v  -~g~p[H F . ~ -  2(gE"~JF.02I} (8.29) 

era(2) 1 
T~ =~-~ {g '~H~ Ha u - 2g["~J F~p F~, ~ 

1 
- �88 - 2(g["alF~p)2] } - ~ J~ ~ (8.30) 

Ju ~ = 4H~, Hang [~m - 4H~, H~g~gt~ ~gt~'l (8.31) 

era(3} 1 

I I JV  - ~g,~a[H Fu~-2(gt '~Fu~)2]}  (8.32) 

It is easy to see that 

era(I) era(2) era(3) 

gap T~p=g~ T~p=g~p T,,p=O (8.33) 

T~ '~u has been considered in this section an energy-momentum tensor for 
the electromagnetic field T~'~ ~2) in Ref. 41 and T ~  ~3) in Ref. 31. They are 
equivalent modulo  equations (6.22)-(6.24). In Refs. 24 and 69 we consider 
T2~ "~~ for a general and Abelian [G = U(I )] gauge field. 

Let us consider two 2-forms 

and 

One easily writes 

~ =  7r*(�89 M,~ #" ^ 0 ~) 

B =  f~-  4rrAl= f~-  �89 5 (8.34) 

whereQ5-Jr~5 nu 0v. - - ~  ,uv'" A 

In this way we define the 2-form of induction/1 and find its geometrical 
interpretation in terms of the curvature and the torsion in the fifth dimension, 
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as in Ref. 18. Equation (8.14a) can be rewritten in the following form using 
three-dimensional vectors and 3 x 3 matrices: 

( a J +  A)  . D +  V + H = 2 A E  

( b J + K ) "  D - W  x H = 2 b E -  2W • B (8.35) 

( V -  Q ) .  D = 2VE 

and 

where 

( K . I ~ - A  � 9  + ( W - U )  | D = 2 K .  i f+  2 W |  E (8.36) 

a =  (gT'gr)44, b = (grg-l)r44 (8.37) 

V = ((grg-')4~), g= 1, 2, 3 

W = ((g- 'gr)4e),  5 = 1, 2, 3 

U ~-((gTg-1)54) ' b =  1, 2, 3 (8.38) 

Q = ((g-lgr)e4), 5= 1, 2, 3 

A t =  ((grg-,)~e), tiS= 1, 2, 3 (8.39) 

K =  ((g-Jgr)~G), 5,/~= 2, 3, 4 

�9 means matrix multiplication in three-dimensional space, 
| means the tensor product of three-dimensional vectors, a dot 
( ' )  means the scalar product in three-dimensional Euclidean space, 
AE means the action of a 3 • 3 matrix on a three-dimensional vector, 

E = (Ea) = (F~4) (8.40) 

D = (Dn) = (H,~4) 

/~= (P,r,~) = (g,r,~eBs) = _ p r  (8.41) 

B = (B,~a) = (e,r, aen~) = - f f l  r 

• is the vector product in a three-dimensional Euclidean space. Here e,r,a.~ 
means the Levi-Civita symbol in three-dimensional Euclidean space. One 
easily gets that 

B = (Be) = (�89 es, r,,~ P,,,~) (8.42) 

and 

H = (He)  ' - = (~ e~ ,~  H , ~ )  ( 8 . 4 3 )  
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In this way we lose the covariancy of equation (8.14), but we get the relations 
between three-dimensional vectors (E, B) and (D, H) as in an anisotropic 
dielectromagnetic medium. 

For example, if we demand D = 0  (E#0) ,  we get 

V x H =2.4 �9 E (8.35a) 

W x H = 2 W x B - 2 b E  

V . E = 0  

� 8 9  � 9  = K ,  F + W |  (8.36a) 

Thus, V_I_E and 

H = 2 ( K - A )  -1 �9 ( K *  F + W |  (8.44) 

if d e t ( K -  A) #0.  
Using equation (8.35a), one gets 

[ ( K - A )  -1 �9 ( K , F + W |  

[ ( K - A )  -1 �9 ( K , F + W |  (8.45) 

Thus, equation (8.45) with V I E  should be considered a condition for g, E, 
and B for a solution of the field equation with dielectric confinement, i.e., 
for D = 0 (no charge distribution in the presence of an electric field). 

Moreover, in our theory there is a different tensor H, i.e., 

H u~' = ga~gr"H~r (8.46) 

Thus, we can connect vectors D and H to this tensor, i.e., 

O = (D~) = (Ha'), • = 1, 2, 3 

n = (Hs) = (�89 d'~'~/t,~,~), g= 1, 2, 3 (8.47) 

H =  (/I,r,~) = (�89 d~"SHs) 

In this case we should rewrite equation (8.14a) in terms of H ~v. We get 

g.ag~v HVV + g-~gZrgrvga. HvP = 2g-*gZrFa~ (8.48) 

We also find 

[2g44g[,r,4] + g48gar(gr4gl a, - g44g y,r,)] Da, 

+ g4~(g,r,4 - g4agaYgr,r,)ffl,~,~ = -2g4agaeEe (8.49) 

[gn4g,~,~- g41;g hr, + g4agaZ(gr4g6,~ -- gra, g~)] D,r, 

+ (g,~t, g4~ + g4~g~rgr~ g6,~,)D,~,e = 2g4sga~Fge - 2(g4ag'~4)E~ (8.50) 
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[gl~4g~4 - -  g44(g~m + g~sgSYg~,,,) + g~gS~'g~,4g4,~,] D,~ 

+ (g,~4g~ + g4,~,g~g 6 Ygy~)/t,~ = - 2g~g~Ee (8.51 ) 

(g~F, g~4 - -  g4Gg~ + g~g~gr4gG~- gnsg~gr~g~)D~ 

+ (g,~,~g~ + g ~ g ~ g ~  g~,~)/t,~ = 2g~g~4E6+ 2ga~g~F~ (8.52) 

Supposing D~ = 0 (D = 0), one gets 

g4~(g,~,4 - g46g~ ~gr,a)/t,~ = -2g4~gaeE~ (8.53) 

(g,~g4~ + g4~g~ ~g ~ g~,~,)/t,~ = 2g4~g~eF~e- 2aE~ (8.54) 

(g,~g~ + g4,~,go~g~ ~g ~)/J,~ = -2g~g~E~ (8.55) 

(g,~g~ + g~g~g~g~,~,)/J,~,~ = 2g~g~4E~+ 2g~gaeF~ (8.56) 

However, we should mention that a separation into space and time com- 
ponents of g~,, F,~, H,~,  and H "~ is possible only if we deal with the 
stationary case. We suppose this in order to have a physical interpretation 
of  the condition D = 0. Otherwise our considerations have a purely formal 
character. 

A stationary space-time determines a three-dimensional manifold Y~3 
defined by the smooth map ~" E ~ Y~3, where ~(x)  denotes the trajectory 
of  the timelike Killing vector f/. The elements of  Y~3 are orbits of the one- 
dimensional group of  motions generated by #. The 3-space ~3 is called the 
quotient space E/G~. There is a one-to-one correspondence between tensor 
fields on E3 and tensors on E, T satisfying FT"T,~=fl~T~U=s 
where F/~ =g~u~)Y/~. In our case we have on Y~3 the following tensors: 

and appropriate tensors built from gt~a~, F,  v, Hv ~, H"  ~, etc. (q = O/~x4). 
The action of the group Gt can be lifted to the electromagnetic bundle P 
and we get A~ , a = A~ ,~= 0 ,  where r /=H*O. This corresponds to A~,~ = 
L~,o3=0 and consequently L ~ I = ~ 4 = O .  In the case of  a static field 
configuration there is a natural way of introducing subspaces E3 (orthogonal 
to the Killing trajectories). 

Equations (8.52)-(8.55) should be considered consistency conditions of  
D = 0. Thus, we can treat them as equations not only for/t,~,n, but also for 
g44, g,r,~, g4,r,, and g,f,,~ under the stationarity condition (the same condition 
for /t,nn, Ee, F~). Thus, the dielectric confinement solution of  the field 
equations can be derived from the second possibility, i.e., D = 0  obtained 
from H "~. 
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9. EQUATION OF MOTION FOR A TEST PARTICLE. 
ADDITIONAL CONCLUSIONS 

Let us come back to the (5.7) and consider it for p =  I. Due to the 
compatibility condition (4.7), we have (7~ the first integral of motion for 
equation (5.7), 

or  

7/(u( t), u( t) ) = )" (ABlU A( t)u n(t) = const 

g(,mu ~(t)u t~(t) - (u 5)2 = const 

However, due to equation (5.6) we have 

u 5 = const' 

Thus, we get 

(9.1) 

(9.1a) 

(9.2) 

a ~ - ~ u ~ - ~  (dx~)  (9.5) 
dt dt \ dt ] 

is the covariant four-acceleration of a test particle. Equations (9.4) and 
(9.4a) are defined on an electromagnetic bundle P. Moreover, we can get 
them on E by taking any local section of P. For F~,v, Huv, and p well defined 
on E (not dependent on a section), we get the same equations. Let us consider 
an initial Cauchy problem for (9.4) such that 

x "(to) = x g  

dx ~ 
- -  (to) = ug (9 .6)  

dt 

g~pug ug = 1 

and 

~q=2u  5 (9 .4a)  
I~/0 

?'(hor(u(t)), ho r( u( t ) ) ) = g(,mu~ ( t )u a ( t ) = const " (9.3) 

We suppose const"_> 0, i.e., we do not consider spacelike world-lines on E. 
Let us rewrite equation (5.7) for p =  1 in the following form: 

.~ [dxP'~ (.rj {dxP~ 
moa"+qg m, tT)=o (9.4) 

w h e r e  
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i.e., we consider timelike curves on E. They have a natural interpretation as 
world-lines of massive test particles (too ~0).  In the case of null world-lines 
one has gtat3)uo Uo =0  (too=0) and u 5 does not have a meaning as (q/mo). 

Due to equation (9.3) we have for every t > to 

dx a dx p 
g~a - ~  (t) ~ (t) = 1 (9.7) 

Now we will find an interpretation of the additional term for the Lorentz 
force in equation (9.4), i.e., 

__[~1~ dx p 
- ' /~  ,,~t3 ~ (9.8) 

To do this, let us consider equation (9.4) without this term, i.e., 

dX~=o (9.9) m~ + qg~rFrn dt 

This equation is a simple generalization of the equation for a charged point 
particle in general relativity to the nonsymmetric case. Now g~r is not 
symmetric and the covariant four-acceleration is defined in terms of the 
connection o3~ on E. This connection is of course compatible with the 
nonsymmetric metric g~p. One easily checks that 

d ( dx~ dx~]= 5 ar [dxa'~[dx~ 
<<o., ,,, (9.10) 

Thus, in general equation (9.9) does not have the first integral of motion 
(9.3). This means that we are unable in general to preserve the initial normal- 
ization for the four-velocity of a test particle. If we want to have the normal- 
ization (9.7), we must add to equation (9.9) the auxiliary condition 

O( U ~) = g(~n)u~u ~ - 1 = 0 (9.11) 

The auxiliary condition (9.11) is a nonholonomic constraint. This constraint 
is nonintegrable and nonlinear (quadratic in velocities). According to the 
general theory of mechanical systems with constraints, we know that in such 
systems we have the so-called reaction forces of constraints. Thus, we should 
write (9.9) in the following form: 

moa '~ = -(2uSmo)g'~'F~,pu p + Q'~ (9.12) 

�9 (u'~)=g,~tju~'u p -  1 =0  (9.13) 

Q~ is a reaction force of the constraint (9.13). The force Q~ must be such 
that (9.13) is automatically satisfied during a motion. Let us find this force. 
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In order to do this, we multiply both sides of (9.12) by g ~ ) u  ~ and integrate 
from to to t. We get 

m00(u  ~) =too (g(~p)u~uP _ 1) 
2 2 

= (g(~p)u t3Q~ _ 2rnouSg(~)g~rFr:u tJup )d t  (9.14) 
0 

If  (9.13) is satisfied, we get 

ft ' (g~a)u~ Q" - 2m~ Fr:g~u~u:) dt = 0 (9.15) 
0 

Moreover, equation (9.15) is satisfied for every t. Thus, we get 

g~t3)u ~ Q~ - 2mouS g~)g~r Frpu auP = 0 (9.16) 

It is easy to see that equation (9.16) has a solution 

Q~ = 2mouSg"rFr:u p (9.17) 

If  we put (9.17) into (9.12), we get 

moa ~ = 0 (9.18) 

This solution has simple physical interpretation. Equation (9.18) is an equa- 
tion of motion for an uncharged test particle. There is no Lorentz force. It 
corresponds to a choice u 5= 0 or equivalently q = 0. Let us come back to 
equation (9.16) and transform it using the condition (4.9). We get 

(g~u~Q~ + gp~uPQa + mouS(gapgraHr~ + garHpr)u~ ut~) = 0 (9.19) 

Equation (9.19) has a solution 

Q" = 2rnouS g['~rJ Hrpu ~ = qgt'~rl Hrl~u~ (9.20) 

Equation (9.19) gives us an interpretation for an additional term for the 
Lorentz force in equation (9.4). This additional term is a reaction force of 
the nonintegrable, nonholonomic, nonlinear constraints (9.11). 

It is easy to see that our constraints are nonideal, for Q~ is not propor- 
tional to a gradient of *.  The constraints seem to be similar to the so-called 
servo-constraints. 

Let us consider a null world-line, i.e., 

g~)u~u  a =0  (9.21) 
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In this case mo = 0 and we have q = 0. Moreover, u 5 could be nonzero. For 
u 5 = 0 we get a ~= 0, i.e., the usual photon trajectory in NGT. If uS:# 0, we 
get the equation of a "charged photon" where u 5 is a measure of its coupling 
to the electromagnetic field. 

Let us pass to the field H~ a. This field plays the role of the second 
tensor of the electromagnetic strength. However, we have to do with only 
one electromagnetic field. Equation (4.9) expresses the relationship between 
F~ a and Ha a . This is a linear equation for H ~ .  The difference between H ~  
and F~ a appears due to the skew-symmetric part of the metric g,a. If gt~al = 
0, we have H~a = F~a. The second pair of Maxwell equations (8.6) is the 
same as in nonlinear electrodynamics or in the classical electrodynamics of 
continuous media. In (8.6) we have a source, a conserved current. This 
current depends on the skew-symmetric part of the metric. In the nonsym- 
metric theory of gravitation the fermion current is the source for the differ- 
ential equation for g0,v). In this way the fermion current becomes the source 
of the difference between H~a and F~a. In the nonsymmetric theory of 
gravitation there is no Lorentz-like force term connected with a fermion 
charge (see Refs. 34, 63, 64). 

This is a very important property of this theory. Due to this, the weak 
equivalence principle is satisfied, i.e., the universal falling of all uncharged 
bodies. This statement is not true for charged bodies. We have the Lorentz 
force term. In the nonsymmetric Kaluza-Klein theory there appears an 
additional term involving the tensor H~a and the skew-symmetric part of 
the metric gt~rl. Due to this term, the fermion charge has an influence on 
the motion of the test particle. It is of course an influence via a gravitational 
and an electromagnetic field (no additional Lorentz force with the fermion 
charge of a particle). But it is an influence. For example, the exact static, 
spherically symmetric solution of Moffat's theory has two sources: a mass 
point m and a point fermion charge 12.(34,63,64) 

Let us pass to equation (4.9). We are able to solve this equation by 
using iterative methods for the weak gravitational field. In order to do this, 
we write (4.9) in the form 

Hp~ = (g~g~rFpv - gt~lgr~Hr~ - gt~81gSVHl~r) (9.22) 

and define the following transformation: 
(n4 ~ 11 (n) 

Haa= M~'"a,~H~,,, (9.23/ 

such that 
(o) 

H ~  = F ~  (9.24) 

(n  + ! ) 8 (n)  0 0  

H ~ = ( g ~ g  rF~-gE~]gV~Hr~-gt~8]gSrH~r), n=O, 1, 2 , . . .  (9.24a) 
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One easily gets that 
(n + I ) (0) 

He,, = (M "+ ')~ ve`'H, ~ = (M "+ ')" ~e,~F~ ~ (9.25) 

The index ( n + l )  means the ( n + l )  iteration of the transformation 
(9.23). We get 

(n + I )  (n) (n) ( n -  I ) (n) (n - I) 

Heu-He~ =-[gt~elgr~(Hr`'- lira) +gt.slg~r(Her Her)] (9.26) 

Now let us suppose that the field g`'e is weak. This means that 

g~. = r/~ e +h~ e (9.27a) 

g~e = r/~e + ~ o  (9.27b) 

I h,el,  I h'~e [ < a << 1 (9.28) 

where r/~ e is the Minkowski tensor. In this case one gets 

gU8 ~_ qu~ _ rl`'u 11 lZhr`" (9.29) 

The skew-symmetric tensors 

Lev = -L~p (9.30) 

form a natural linear six-dimensional vector space. Let us define the follow- 
ing norm in this space: 

IILII = max ILa~l (9.31) 
f l , v  = 1,2,3,4 

Thus, our space becomes a Banach space. For sufficiently small a one finds 

(n+ I) (n) ~n) (n4 I) 

[1 H -HII  <fl(a)lIH- H [I (9.32) 

where 0 < fl(a) = 96a < 1 ; if 0 < a < 1/96, equation (9.32) means that the 
transformation (9.23) is a contraction. According to the Banach theorem, 
this transformation has a fix point 

He`'=MF'"e`'H,v (9.33) 

such that 
( ~ )  fn) 1cr 

Ha`'= lim He`'= lim(M")Uve,,F~,v=MUV`'eFuv (9.34) 
n~oc9 n---coo 

The limit (9.34) is understood in the sense of the norm (9.31) and 
(~-j) 

MUVe "̀ = lira (M")"~e~ (9.35) 
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The limit (9.35) is understood in the sense of the usual linear operator 
topology generated by the topology of a Banach space. According to the 
Banach theorem, there is one and only one fix point of the transformation 
(9.23) (in the weak-field approximation). Thus, we get that 

Hm, = MUVpa Fuv (9.36) 

Equation (9.36) is the solution of equation (4.9). In this case the additional 
term for the Lorentz force in equation (9.4) takes the form 

-qgta yl M~'Vrt~ua F ~ ~ (9.37) 

It is purely described by the tensor F~,v and the metric tensor gaa. We have 
the same for the reaction force of constraints 

Qa = _qgta~,l M~,, pua F~ ' ~ (9.38) 

For nonholonomic (nonintegrable) constraints we have the following 
statement. A variational problem with differential (nonintegrable, nonholo- 
nomic) constraints cannot be reduced to a form where the variation of a 
certain quantity (an action) is put equal to zero. This is true in the much 
simpler case of linear nonholonomic constraints. (72) Thus, unfortunately, we 
cannot formulate a principle of action for equation (9.4). Moreover, we are 
still able to interpret the additional term in the Lorentz force as a reaction 
force of the nonholonomic constraints (9.11). However, we can try to formu- 
late a local Gausslike principle in order to derive equation (9.4). Let us 
consider a local Gausslike principle for equation (9.4) in the following form: 

6 Z 2 = 0  

modulo constraints (9.11), where 

mo a Fr  

far is defined as follows "r ceP _ntr _1.r co - r  �9 J o J  8 - g  ~ . ~ - n  ~ , j  ~ - j  g(~e), andfP~fp. -- 
6~. ,  det(Fou ) r  

Thus, f exists if the matrix hCe is invertible, symmetric, and positive 
definite. It seems that only in this case can we formulate a Gausslike principle 
for equation (9.4). 

Thus, we get 

d et ~, t m 0 u 

We recall that for the Gauss principle we are taking the variation with respect 
to the accelerations only. The acceleration a a is a covariant acceleration with 
respect to the connection Fat~r on E. 
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Differentiating equation (9.11) with respect to t, one gets 

o 
at  at  Ou ~ d~- 8g(,,~) dt g(a/~) 

8 ~  

Ou a 
- - -  a '~ + D2~P = 2g(aa)uaa a + D2@ 

Thus, the allowed variations of the accelerations satisfy the condition 

8@ 

Ou a 
- -  t~a ~ = 2g(~p)u P~a ~ = 0 

From the above equations we get 

~(~P)f~r(moa r -  F'r) f ,  ~ + 2rg(v , )u  ~ = 0 

where r is a Lagrange multiplier. Using the definition o f f ,  p, we come to 
equation (9.4) and r = - q / 2 .  The force Q~ can be expressed in terms of the 
ideal reaction force Re, i.e., 

Q~ = p P ~ v R ~  , 11 v~O 

where 

P" v = g['r]Hr 

Note that the conditions for the application of a Gausslike principle 
are as follows: 

1. det[(g~cg Cu - gr162 ] ~ 0. 
2. The matrix h~a = (g~cgCU_ gr162 is positively defined and sym- 

metric. Let us note the following facts. We formulate a local Gausslike 
principle for the equation of motion for a test particle in nonsymmetric 
Kaluza-Klein theory (NKKT). Moreover, the original equation has been 
derived from a Galilei like principle in NKKT.  According to this principle, 
test particles move along the simplest lines in N K K T  (an extended Galilei- 
like principle states this). Moreover, we can get the equation in a different 
way, formulating a local Gausslike principle. This principle is generally co- 
variant and the acceleration a" is a covariant four-acceleration with respect 
to the nonsymmetric connection on E. The constraints are also covariant 
and depend explicitly on t - -a  parameter along the particle trajectory. In this 
way we get the interpretation of an additional term for a Lorentzlike force 
as a nonideal reaction force (it is not proportional to the gradient to the 
hypersurface of constraints). The application of a Gausslike principle is 
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possible under some assumptions concerning g,a and Fur. Moreover, they 
can be satisfied and we get a proper equation (i.e., those obtained from 
a Galileilike principle in NKKT). The above Gausslike principle can be 
considered a minimum (extremum) principle for a quadratic function of 
accelerations modulo constraints. For F" we have 

F a = qg"t~Fljrur 

During the motion Z 2 is minimalized (extremalized) modulo the nonlinear 
nonholonomic constraints (9.7). The constraints are nonideal and the force 
Q" is a nonideal reaction force. 

From the geometrical point of view (the force Q" is absorbed by the 
geometry) it seems that only the metric geometry or the Einstein geometry 
defined on the five-dimensional Kaluza-Klein manifold lead to the condition 
(9.1). The geometry defined by the metric ~ = g(~t~)O" | ~tJ, the 2-form g = 
gt,t~30 ~ ̂  0~, and the connection ch~a satisfying the condition (4.7) we call 
the Einstein geometry. If we want to get conditions (9.2) and (9.3), it seems 
that we have only three possibilities: 

1. Riemannian geometry (classical Kaluza-Klein theory). 
2. A generalization of the Einstein-Cartan theory and the Kaluza- 

Klein theory. 06'69) 
3. Einstein geometry on the electromagnetic bundle manifold, i.e., the 

theory described in Section 3. 

The first two geometries are metric. The first one is only a model of a 
unification of electromagnetic and gravitational fields. This unification is too 
perfect. We do not get any "interference effects" between gravitational and 
electromagnetic fields. It seems that it is only a five-dimensional representa- 
tion of general relativity and Maxwell's theory in Riemannian space-time. 
The second possibility, due to the Cartan equations on the space-time and 
in the fifth dimension, offers some interference effects: an additional current 
connected to spin sources. W. Israel's energy-momentum tensor as the tensor 
of an energy-momentum for the electromagnetic field, and a contact inter- 
action term of electromagnetic polarization in the total energy-momentum 
tensor. Unfortunately, an additional geometric degree of freedom, torsion, 
is connected algebraically with external sources, spin and the electromagnetic 
polarization of matter. Thus, this torsion does not propagate. The third 
possibility seems to be more interesting. There are "interference effects" 
between gravitational and electromagnetic fields. Torsion propagates. It is 
interesting to notice that despite completely different geometries �9 in the 
second and third possibilities, we get the same equation connecting the 
electromagnetic polarization existing in the theory to a torsion in the fifth 
dimension. 
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Let us pass finally to the following conclusion. The nonsymmetric 
Kaluza-Klein theory offers us a unified theory of the gravitational and 
electromagnetic fields. In this theory Einstein's unified field theory (real 
version) is treated as a theory of the pure gravitational field, according to 
Moffat's approach. (~'63'64) However, we can still have the old interpretation 
of Einstein's unified theory if we follow Klotz. (73) Due to the metric hypo- 
thesis, he interprets Einstein's theory (weak system of field equations) as a 
unified field theory of macroscopic gravitational and electromagnetic fields. 
The metric hypothesis means that 

ra _I al (9.39) 

where p is a metric tensor, which in general has nothing to do with gtat3). 
Using equation (9.39), Klotz is able to get a Coulomb solution and Lorentz 
force term, which was impossible to get in previous approaches. He interprets 
RE,v1(F) as Fur--the strength of the electromagnetic field. In the linear 
approximation this is coherent with the previous interpretation, 

F.u v aft "~g gtq~l;~ (9.40) 
(+) 

where the dot means a covariant derivative with respect to I'~(pr). 
Itowever, the condition (9.39) seems to be very restrictive and some 
solutions of Einstein's weak system of field equations do not satisfy 
equation (9.39). 

The pure gravitational interpretation proposed by Moffat seems to be 
more fundamental. The nonsymmetric Kaluza-Klein theory offers a possible 
reinterpretation of NGT. According to equation (4.9), the tensor H ~  is 
expressible by Faa and g~p. The equation is linear with respect to Hap and 
can be solved. In Section 8 we define the tensor Map. This tensor is skew- 
symmetric and if gE~t~l = 0, Ma~ is zero, too. Maa has the physical interpreta- 
tion as the polarization tensor. Simultaneously we get the geometrical inter- 
pretation of Maa as the torsion in the fifth dimension ( Q 5  = 8roMan). Thus, 
we come to the conclusion that it would be possible to reinterpret the 
nonsymmetric theory of gravitation as a theory with nonzero torsion in 
the fifth dimension as a fundamental quantity. In this way one rewrites 
equation (4.9) 

1 
g~pgr~M~a + gasg~YM~y = ~ (g6,g~F~a - ga~g~XF~r) (9.41) 
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Using matrix notation, we can rewrite equation (9.41) in the following form: 

g(g-~)rM+grg-'Mr=--~[g(g-J)rF-grg-JFr] (9.41a) 

where T means matrix transposition. 
We can treat equation (9.41) as an algebraic equation for gt~sl and M~ s 

as a known quantity. We have the same number of degrees of freedom for 
M,  s and g[~s]. Equation (9.41) is nonlinear with respect to gt~m and more 
difficult to solve. In this way we can reinterpret the full theory as a theory 
with torsion in the fifth dimension. Thus, our theory has many similarities 
with previous approaches, i.e., the Kaluza-Klein theory with torsion. (16'68) 

Let us consider equation (9.41) in more detail, trying to solve it using 
iterative methods (i.e., generalized Newton-Kantorowicz method). In order 
to do this, we consider a 16-dimensional Banach space of 4 x 4 matrices 
(gas) = g with a natural norm of operators induced by a Euclidean norm in 
four-dimensional Banach space. Let us denote it by Y" = (X, II o tl ). We define 
a nonlinear operator acting in X for such g = (gas) that de t (g .a)~  0, 

T: X --* X (9.42) 

We have D(T) = {ga~, det(g.p) ~0} and it is open in X, 

1 F T(gpv,))~p=gs~gr~(M,~-~ Fr~)+g~g~r(Mpr+-~ Pr) (9.43) 

One easily notices that T0cg) = T(g) for geD(T), ~r162 Thus, we can con- 
sider an equivalence g~ ~g2 if g~ = 1r 

Let us denote an equivalence class of g by [g]. One easily notices that 
there is ge[g] such that Ilgll = 1. Thus, we can consider T in D(T) c~ S(1), 
where S(I) = {gas, IIg[I = 1}. 

The solution of equation (9.43) is given by 

T(go) = 0 (9.44) 

It is easy to see that if T(g0)=0, then T(trg0) =0  as well for tr162 Let us 
notice that the operator Tis continuous in ~r and it possesses Frechet deriva- 
tives of any order at any point of D(T). They are bounded linear (multi- 
linear) operators in 5f. Let us find the first and second derivatives of  T at 
gED(T) cX. We get 

1 F ((dT),g)~V~s = (6~g r~'-g~sg~g'~)(M~-~-s ~a) 

+(6ag  - g ~ g  g )~Ma7+-~z Far J (9.45) 
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and 

((d2T) Ig)u,',ev, p 

= (gat~gr ~.gp~g~a + g ~ g r  ~g,  V.gOa _ ~ g y V . g p ,  _ ~ g r ~ g ~ p )  

+ (g,,aga V, gp ~g,, r + g~ ~ga ~g,, V, gOr_ ~ gg ~ ~,gOr _ 8~g v, ~g~ r) 

1 
(9.46) 

One easily finds 

[[[(dT) Iglll_< 211g -j  I1(1 + IPgll fig-~ll )(]l Mtl + IIFI}/ \ 4~ / 
(9.47) 

and 

+ IIFtl/ (9.48) IIl(d 2T) UII ~ 4lie- ~11=(1 + Ilgll lie- all ) II M}I - - ~ ]  

where IIg-III is the norm of the matrix gaa, IIMII the norm of Maa, llFII 
the norm of F~t~, and IIg[I the norm of g,a. Here III. III is the operator 
norm induced by I[" I[ in h r. One easily gets that dTirg=(1/tc)dTlg and 

(d2T) In is continuous (of course) with respect to g in D(T). Let us 
consider hoeD(T) such that (dT)lho is invertible at ho. This means that 
((dT) Iho) -~ =AoeB(  Z, Z) (it is bounded, of course). One easily gets 

IIIAIII < Illd(T)[hollP s 
t det((d(T)1~,o) I 
215lJh;-Illls(1 + IlhoJl Ilho~]l )~s(JIMII + II Fll/4Jr) j5 

< (9.49) 
I det((d(T)Iho) I 

From (9.49) and (9.48) one finds 

[[[Ao( d2T) Iglll 

- -  Ildet-~o)ll] (9.50) - -~-~/ [tdet(g) I1 [Idet(g) 

x Idet((d(T)I~,o)I-'" Idet(h0)I-'s 
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We use for IIg-lll the following inequality: 

IIg-~ll < Ilgl[3 (9.51.) 
Idet(g) l 

Let us calculate IIAoT(ho)It. We find 

IIAoZ(ho) II < IIIAolll �9 II Z(ho)II 

<(2(IIMll + []Fll/arc)/t6 Hho[149( 1 + [Iholl4/l[det(ho)[I )15 

- \ I det(ho) I / I de t ( (d (T)  I,,o) I 

Let us consider a ball K(ho, r), r<l/llho-lll, 
g~R(ho, r). We define the function d(r, ho), 

d(r, ho) = min [Idet(g~a) l] (9.52) 
g E g(ho , r )  

We easily find for g~R(ho, r) 

IIIAo( N2T) Iglll 

- + Ihl / 

k Ihl Ilholl 1+  ih14 / 

\ 1 - ~ '  

for geK(h, r), where h=  det(h0) and D(ho)---Idet(dT)I,,0. 
Let us find the product a �9 ft. We get 

a/3 = 2( 2(IIMII + IIFII/4~/32 
\ Ihl J 

• 

- a ( 9 . 5 1 )  

K(ho, r) c D ( T ) ,  and 

tl ho II 94(1 + II ho II 4/Ih ])30( II ho I[ 3/I h I + 11 ho II )'tl h I + (II ho II 3/I h I + II ho I[ )3] 

O2(ho)d(ll ho II 31 h I, ho) 

Let us define the following sequence: 

(o) 

g =ho 
(n '~ I ) fn)  (n)  (n)  

g = g - ((dT) lg) -~ T(g) 

(9.54) 

(9.55a) 

(9.55b) 
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If  this sequence converges, the limit 

{,m) (n} 

g -- lim g 

satisfies equation (9.44), i.e., 

T ( g ) = 0  (9.56) 

The sufficient condition for the convergence of  (9.55a)-(9.55b) is 

aft_<�89 and r>__ 
1 - (1 - 2a,B) 1/2 

In this case the sequence (9.55a)-(9.55b) converges to the solution of equa- 
tion (9.44). One gets 

H g - g l ] - 1 3 . 2 "  (2aft)2" (9.57) 

This is the Kantorowicz method. Thus, the method converges quickly. Using 
the method, we find 

fo) 

g, v(Mp~(x), F,,p(x)) = fg~ v(x) (9.58) 

and this is a nonsymmetric metric induced by the electromagnetic field and 
the polarization tensor Mpv(x) equal to the torsion in the fifth dimension. 
The most important fact is that we get a nonzero skewon field 

(o} 

Hz ~(x) = g [upl(Mpv(x), F~(x))  (9.59) 

which can be substituted into the field equations for gravitational and 
electromagnetic fields together with the symmetric part of  the metric 

g, v( X) = g(, x) + h,,,( x) (9.60) 

We can reconsider all the formulas presented here in a little different 
formalism, introducing ordinary vector and matrix notation in 16-dimen- 
sional linear space. This means that for any pair of four-dimensional indices 
we introduce one 16-dimensional index, i.e., 

a=(p - 1)+ v (9.61) 



674 Kalinowski 

It is easy to check that (9.61) is unambiguous. One has 

T,~,,--, Ta 

g ~  ~ Xa (9.62) 

D T,~.......! ~ ~ ST,, = A b 

•gu v ~Xt, 

This formalism can help us in some practical calculations. 
Finally, let us notice that we can consider a simpler method, i.e., a 

different sequence g~")' 

(o) 

g' = ho (9.63a) 
( .  + t) (n) (n) 

g' = g' - ( ( dT)  Iho)-' T(g') (9.63b) 

This sequence converges to the solution of equation (9.41) 

T ( g ' ) = 0  

However, the convergence is slower. 
Equation (9.41) can have more than one solution in D ( T ) c X .  
We do not mean here solutions obtained from go [T(go)= 0] in a trivial 

way by multiplying by a nonzero factor ir #0 ,  i.e., *:go. We mean here 
solutions which belong to different equivalence classes, i.e., go and go' such 
that [go] # [go']. Finally, let us notice that because of T(icg)= T(g), we can 
always consider a weak-field approximation for guy even if g is not small. 
This is because if T(go)= 0, then T(tcg0)= 0 such that 

*:go = r/+ h (9.64) 

where 17 is a Minkowski tensor and II h LI << 1. 

10. MATERIAL SOURCES. PALATINI VARIATIONAL PRINCIPLE 
AND FIELD EQUATIONS 

In this section we consider material sources in the nonsymmetric 
Kaluza-Klein theory, i.e., an energy-momentum tensor of external sources, 
a fermion current, an electric current, and a spin-density tensor of external 
sources. We will deal with the case p = 1. 

We introduce material sources and find equations for gravitational and 
electromagnetic fields in the presence of matter with nonzero fermion current 
and nonzero electric current. We define a new geometrical degree of freedom 
(a generalized contortion tensor) in a similar way as in the Einstein-Cartan 
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extension of  Moffat 's theory (Einstein-Cartan-Moffat theory(74)). Simul- 
taneously we introduce spin sources. We find equations for the gravitational 
and electromagnetic fields and the Cartan equation in this case. 

In Section 4 we introduced two connections on P, coAn and WAn (we 
change for convenience the notations coAs, DAB and WAn, I~AB). NOW the 
connection 05AA does not satisfy the compatibility condition for ~'AB, but a 
different connection ~As = 7V~scO c satisfies this condition: 

5rA +~- =/3rA~- rADO~c(A)o c= o (10.1) 

~5.g, An = 0 (10.2) 

where/3  is the exterior covariant derivative with respect to the connection 
/ ~  and Q~ is the tensor of  torsion for the connection ~AB. One easily 
finds 

[rc*(A",)+gr"Hr, O , Ht3oOr ] 
/~As = L ga~(H~ + 2Fpr)O r (10.3) 

where we have for 7~apr 

g, v.~ - gp J~P, ~ - g~pA%~ = 0 (10.4) 

For ff'AB we have, in a similar manner as in Section 4, 

3 A I~AB = 03AS - Z~ B if" (10.5) 

Ha7 =-  Hrp is a tensor on E and satisfies the following condition: 

g,pgr6 Hr~ + g~agar Hpr = 2gaagarF~r (10.6) 

For the connection 05AB we have the following: 

~lr*(co~)+g'"Hrp O~ H,o+O' ] aA"=L g~O(H.~a+ 2Ft3r)O ~ I (10.7) 

Thus, we have on P all five-dimensional analogues of  the quantities from 
Moffat 's theory of gravitation, ~34'63'64) i.e., if'As, o5A8, AAs, and 7An. 

In Section 4 we calculate the Moffat-Ricci  curvature scalar for ff'AB, 

R(g") = C"(R%,c(VV) + 1R%~s( if')) (10.8) 

where RABco(ITV) is the tensor of curvature for the connection ff'AB, and 
we get 

~ ~ +8zrGu~ ~ 1 R(17V)=R(W) - - ~  (-~[2(g[~]F~)2-H"~F,~]} (10.9) 
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In (10.9) we come back to a normal ~s t em of physical units and in place 
of A,=2, we put ).=21pl/a~,,. Here R(W) is the Moffat-Ricci curvature 
scalar for the connection Wat~ ,(34,63) and 

= + 

= +_] gEO,  (lO.lO) 

where /~aTa( l~)  is the tensor of curvature for the connection t~t~, 

and 

/~(~-) = g~a(/~ r (~ )  + �89 ~r~a(~) ) 

is the Moffat-Ricci curvature scalar for the connection c~~ [/~ ~t3r~(~) is the 
curvature tensor for the connection a]~a]. 

Let us introduce material sources: a tensor of energy-momentum 
T uv, a fermion current S ~, an electric current j~ ~, and a phenomenological 
Lagrangian of material sources: 

81rGN ~v . 8/t'a 2 = 4n 
WuSU +-- jUAu (10.11) L,,,= -~ g T~v~- 3 c -  

C 4 6L,,, 
Tu~ = 

8~rGN 6g u~ 

3 ilL,,, 
S u - (10.12) 

8Jra 2 ,~ I~" u 

c 6L,,, 

4zr 6Au 

and A m is the four-potential of the electromagnetic field. We assume that L,,, 
is gauge invariant. This means that ~ is conserved, 

0,J~ u =0  (10.13) 

Let us recall some properties of the fermion current introduced by 
Moffat. Fermion current (fermion charge) plays the role of the second gravi- 
tational charge in NGT. This quantity has an influence on the geometry of 
space-time and it is conserved. In the nonsymmetric theory of gravitation, 
the fermion current is introduced in a phenomenological way: 

S ~ = Z f 2 p i u  u 
i 
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where f is the coupling constant of  the ith fermion 
length) and p~ the density of  the ith fermion. 

We have 

F= 12 = f S 4 d3 x = z ~ f  iNi 
i 

(with dimension of  

and 

dF dl 2 
- -  - - 0  

dt dt 
(F is the fermion number) 

where Ni=~ p~u"x/~ d3x denotes the number of the ith fermion. 
In (10.11) we introduce a phenomenological Lagrangian with a term 

(8~a2/3) if'uS ~, where a 2 is a universal coupling constant for a fermion. This 
constant is equal to one of  the f~  or a combination of  them such that 

8__~ I~S~, = 8_~_~ i~ u )_,f~ p,u" 
3 3 

In the case of  only one kind of  fermion we have a 2 =f2 .  Thus, we can write 
this term as 

3 - 

Let us define the Palatini variational principle on the manifold _P for the 
density Ix/7 R(~z) + L,,,] 

5 f v  [ ~  R(I~)  + L,,] dSx=O, V c P  (10.14) 

where 7 = det(TAD ~ -  det(g~t0 = - g. We vary with respect to the independ- 
ent quantities gaa, W~pr, and A u. After simple calculations we get 

C 
(10.15) 

g[U v],v = 4traZSU 
~--p ~ p  __ 

g~,,.~ - gp, ,A ~ , . -  g~pA  o.. - 0 

4~c 
~ . / / ~ '  = - -  [j~ + 4a2cS~(g tJ' ~]F~ ~) +-~c gt~p] Ot~(g[U VlF, v)] 

c ~ 21r- 

(10.16) 

(10.17) 

(10.18) 
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where X~'u. is the connection from Moffat's theory of gravitation ~ and 

APu~ = ~Pu~ + DPu~(S) (10.19) 

where 

47ra 2 
g p ~ D t '  +gin, D l ,  _ 

3 
- - -  SP(gu,~gp~ - gupg,~v + gu ~gt,~,l) (10.20) 

Equations (10.15) and (10.16) are equations for the gravitational field in the 
presence of material and electromagnetic sources. 

T~'~ is the energy-momentum tensor for the electromagnetic field. Equa- 
tion (10.17) is a compatability condition for the metric on space-time and it 
is usually satisfied in Moffat's theory of gravitation (34) if the fermion current 
is not zero. Equation (10.18) plays the role of the second Maxwell equation. 
Now we have on the right-hand side of (10.18) a sum of three currents: 
.[a, (c/27r)gta~]Op(gtU,.]Fuv), and 41ra2Sa(g[at31F~v). The first is the current of 
external sources, the second is that known from the nonsymmetric Kaluza- 
Klein theory (see Section 9), and the third is induced by the fermion current. 
The total electric current 

( lo .21)  

is conserved, 

l o t  

Oaj~ ~ = 0  

Let us define the tensor of the electromagnetic polarization M~p, 

(10.22) 

Has = Fap-  4~r Map (10.23) 
c 

It is easy to see that 

Q5 t3(~) = QSat~(/~ ) = 8re Maa (10.24) 
c 

where QS~p(r') is the tensor of torsion in the fifth dimension for the 
connection oSg and QSar is the tensor of torsion in the fifth dimension 
for the connection ~As. For the connection AAs we have the compatibility 
condition (10.2). Thus, we get a compatibility condition for -g-'*B and an 
interpretation of the electromagnetic polarization as the torsion in the fifth 
dimension for the connection .A.AB. If S ~ = 0, we get than = .g, AB. 
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11. S P I N  S O U R C E S  

Let us introduce spin sources into the phenomenological Lagrangian 
(10.11). To do this, we define on E (as in Ref. 74) two connections I~ and [": 

f f ' ~ r  = l ~ p r  + Ic~r (11.1) 

['~t~y = ~ ' ~  + tc~t3r (11.2) 

where lc~ar is a tensor field such as 

rc"a~ =0,  r " ~  = - lc~r~ (11.3) 

It"at plays the role of  the generalized contortion tensor from Einstein- 
Cartan theory. 

It is easy to see that 

~ L v = p ~  _ ~ ~ -  5 u W~ (11.4) 

where 

We have 

.~(w ~ -  w % ) =  �89 ~'%v)= ~ 

0~,(P) = ~,~(~) = 0 (11.5) 

where___Q*,~([ ") is the tensor of  torsion for the ~connection ~ a  and 
Qz,~(F) is the tensor of  torsion for the connection ~z . (See Ref. 75 for 
more details.) 

Let us define connections WAB and co~B on P such that 

and 

w A  A 4 c'A 
B = ( O  B - - ~ O B  

co A - [ Tr*( ~ ~ ) + grO Hrt~O 5 n - \  g,,e(iire+ 2Fa~,)Or I Ho Or) 

(11.6) 

(11.7) 

W".= ff'"p~, ~~ ~, if/= ~,~" (11.8) 

We define also the third connection 

( rc' ( ~'~l~ ) + gr" Hr~05 
AAn=\ g~,(H~, + 2Fts./)Or I Ho 0~) (11.9) 

where f~t~ = fU~fl ~r is a connection on space-time E such that 

P _ _  P guv.,~-gpvO ~ gj, pf~ ,~v=0 (11.10) 

It is easy to see that AAn satisfies the compatibility condition (10.2). Using 
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formulas from Sections 4 -9  and Ref. 34, one easily finds the Moffat-Ricci 
curvature scalar for the connection WAB: 

R ( W )  = R ( W )  + 8~rGN ~ 1  H,~,Fua] } 
6 .4 ( 8  ]'L" [2(gtUVlFuv)2- 

= ,~(~) + g~ ~?+~ +~-;0- g~ ~:%o ~:~uo 

8~GN I Cu*" 2 (~ + 2gC~"lWtu.c,l+---~{-~-~[2(g 1 F ~ . ) - H  u Fu,~]} (11.11) 

where R(W)~ is the Moffat-Ricci curvature scalar for the connection 
___ or, and R(F) is the Moffat-Ricci curvature scalar for the connection 
F~t~r. Let us define the Lagrangian for the material sources such that 

8ZGN - 
L," = L,,, + ~ - -  Wr v �9 S,fl ' ~ (11.12) 

[see__.(10.11)], where we put in place of I~ u a vector I~ u which is really equal 
to W u . We have (10.12) for L"  and 

uv 87rGu ~L', 
S,~ - _~ , S j v - - - - S ~  ~ (11.13) 

c 4 ~;W ~,v 

for S ~ we have 

8~GN ~L~,, 
S ~ - (11.14) 

c4 6 I~'~ 

Let us define the Palatini variational principle on the manifold P: 

6 f [L~,,+,,/~R(W)]dSx=O, VcP ( 1 1 . 1 5 )  
d V 

We vary with respect to the independent quantities guv, ff'xu~, and A u. 
After some calculations we get 

R.v(ff ' )  - �89 = (T~.,+T~v) (11.16) 

guv,~- govA v6-  g.oA%v 

\ (gpvlfPl2c r - 8~GN pr~ +gupg%~+--~gp~g,~ .S~  ) (11.18) 
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0~H~, = 4~r [ :  + 4a2cgO(gt, vjr, v)] + s gt~']a,(gJ" VJF, v) (11.19) 
C / [  

To be in line with the usual interpretation of the Moffat compatibility condi- 
tion, we suppose that 

----p __ ~ p  
guv:-gp~A u,~ gupA ,,u=O (11.20) 

and we get 

/87rGN'~ p y  
govx~,,+g, dcP~v=-[--~)g:vg, rS,, (11.21) 

i.e., a generalization of the Cartan equation from the Einstein-Cartan- 
Moffat theoryJ 74) 

Equations (11.17) and (11.19) differ from the analogous equations from 
Section 10 [(10.16), (10.17)]. The tensorial density S~ "v is a spin density and 
for a microscopic spin density (of a Dirac field or Rarita-Schwinger field) 
we have 

Sf v = 0 (11.22) 

In the case of Mathesson spin (hydrodynamic macroscopic spin) one easily 
checks the same. We have S JV=u,,S "~, uvSUv=O, S"~=-S vu, u,, is the 
four-velocity of the fluid, and S u~ is a spin density tensor in the rest frame. 
Thus, we get 

g[" vl,v = 4~ra2S" (11.23) 

47r 'o' 
OvH,~U =__ja (I 1.24) 

r ~ 

where j~t~ is defined by ( 10.21). 
Using equations (1.10) and (1.13) from Ref. 75, one transforms 

(11.16) into 

- -  ~ 1 ~ --~ V N  Rvu( W)- ~gu,~R(W) = ~--- (T.~ + T.,~) (11.25) 

where 

eft C 4 

T.,~ = T.a - -  [K'"+~-. + ;a -  ~'/~.~ x'8,~/~ 
8rrGN 

I y v :  f l+  - ~g.~g t r  v-r+;/~- tca~dcorp)] (11.26) 

and x~/~r is defined by (11.21). Thus, we get spin-spin interaction corrections 
from the Einstein-Cartan-Moffat theory. 
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and 

Now it is easy to see that 

(11.27) 

AAn =/~AB (11.28) 

and the connection/~AB satisfies the compatibility condition for Y,4a on the 
manifold _P. For the polarization tensor M~a we have the same geometrical 
interpretation as before [see equation (10.24)]. 

12. GEODETIC EQUATIONS IN THE CASE OF 
NONZERO SOURCES 

In the nonsymmetric Kaluza-Kiein theory (Section 9) we have the 
following equation for geodesics: 

/~u ~ 
- - +  2uS(g~rFrp + gt~rlHrl~)u~ = 0 
dr 

(12.1) 

/d2x" ~ d r'-~r) 
- ~ + q(g"rF~t~ + gt"~lHrtJ) dr mo !-~r2 +A (t3r) dxtJdr dxa=o (12.2) 

The connection ,~AB is compatible with the metric ~'An. In Moffat's theory 
this kind of geodesic is called a nonextremal geodesic. Moreover, in Moffat's 
theory particles move along different geodesics, (34) i.e., 

d2x_____~ ~. I aldxP dXr=o 
dr 2 +[ )fly dr d~ 

(12.3) 

u 5 = const (2u 5 = q )  
17'/0 

where q is the charge and m0 is the rest mass of a test particle. Here D/dt 
means covariant derivative with respect to o5~ along a curve to which u"(r) 
is tangent. 

The usual interpretation of the geodetic equation in the Kaluza-Klein 
theory is that equation (12.1), after taking a local section of the electromag- 
netic bundle, is an equation of motion for a test particle in the gravitational 
and electromagnetic fields. Moreover, F,v and H,v are well defined on E 
and the shape of equation (12.1) does not change. 

If we have nonzero fermion current S ~ # 0, it is necessary to put in place 
of o5~ the connection ~ and we get in the holonomic system of coordinates 
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Thus, we should put in place of  -~ A(ar) the Christoffel symbol {p~} for 
g ( ~ a ) .  Finally, we get 

(d2xf +~ a 1 dx t~ dxr'~ dx'=o (12.4) 
mo \  dr 2 [fly) dr -~rJ +q(g~rFrp+gt'wlHr~) dr 

We will consider equation (12.4) the equation of  motion for a test particle 
in the nonsymmetric Kaluza-Klein theory. The connection 

k + 2F 00 
(12.5) 

is not compatible with the metric yAs on _P, just as the connection 
o3"p={~r}0 r is not compatible with g~a on E. In the theory with spin 
sources, particles without spin and fermion charge move along geodesics in 
aSAn (as supposed in Ref. 74). The problem of motion for spinning particles 
with fermion charge demands further investigation. 

Let us consider the geodesic equations (12.2) and (12.4) (the equation 
of  motion for the test particle) in more detail. In Section 9 we proved that 
equation (12.2) has the following first integral of motion: 

dx ~ dx ~ 
- const (12.6) 

g~-m dr dr  

if A~ar = I'~pr. In this way we are able to keep a normalization for the four- 
velocity during the motion, i.e., 

dx ~ dx t~ 
g ( ~ a )  - 1 ( 1 2 . 7 )  

dr  dr  

for 

r_>Vo if ~ a g(~p)UoUo = 1 (12.8) 

where 

= dx-2-" 

dr  ~=~o 

i.e., we consider timelike trajectories of  a test particle. For the null case we 
need a different condition, i.e.; gr 0. In this case we put m0 = q  = 0. 
However, in general, uS v a0 and this describes the coupling of  a particle to 
the electromagnetic field. 
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In the case of nonzero fermion current we have equation (12.2). Using 
similar arguments as in Section 9, we can prove that for equation (12.2) we 
have the integral of motion 

dx ~ dx ~ 
g ( ~ a )  - -  = const (12.9) 

dr dr  

and we are able to keep the normalization for the four-velocity. We suppose 
that const > 0 because spacelike world-lines are unphysical. The additional 
term for the Lorentz force 

dx p 
q" g t a H H r p -  (12.10) 

dr  

plays the role of a reaction force for the nonholonomic constants 

g~,,p)u'~u ~ = 1 (12.11) 

Let us consider equation (12.4) and multiply both sides of (12.4) by 
g(~p) dx~ We get 

 xo x t. 
2 dr  g(~a)dr  d r /  0, mo:/:0 (12.12) 

Thus, equation (12.4) has the same first integral of motion as equation 
(12.2). This means that we are able to keep the normalization of the four- 
velocity during the motion, i.e., equation (11.10): we consider timelike 
world-lines of a test particle (mo 50).  In the case of a null-line we have m0 = 
q=  0 and g~pu~u ~= O. Moreover, u 5 can be nonzero. In this way the term 
(12.10) plays the role of a reaction force for nonholonomic constraints 
(12.11) in equation (12.2) as in equation (12.4) (for m0r  and q#0) .  

Let us pass to equation (10.20) in the weak-field approximation. We 
have 

where 

g ,v=  r/u~+huv (12.13) 

[huvl<a<<l 

For the inverse tensor we have 

(12.14) 

guy = r/,V+/T,v ~ quv_ qou qr~hr ~ (12.14a) 
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Let us rewrite equation (10.20) in a more convenient form, 

gpvDPucr + gpuDP~v 

4rca 2 
- SP(g~,,gp~ - gupgcw + gu ~g[~,p]) + g[up] D P,,~ 

3 
(12.15) 

Let us consider the equation 

(0) (0) 4 g a  2 p 
gp,,DPu(~ + gpuDP,~v=- S (gu~,gpv-g,upg,~v + guvg[,~p]) 

3 
(12.16) 

The solution of equation (12.16) is 

(o) 
D ~  

2 2 
yea  cry p 

= -  g S (2gu,,g[p~]-2g,,~g(up) + 2g~ug(p(,) 
3 

(12.17) 

Let us consider the following transformation" 

(n+ I) ( . +  I) 
gp~ DPu~ +gpu DP~ 

47t.a 2 (n) 
- -  S P ( g u c r g p v  - g u p g p v  + g,u vg[pr + g [ u p l D P o ' v  

3 
(12.18) 

(n+l)  

for n>O, or, after solving with respect to D%~, 

(,+ 1) 2~a2 av 
D"u,~ = - g Sa(2gu,~gtpv] - 2g,,vg(uo) + 2gvug(pc,) 

3 

- g, ~gt,,p] + gv,,g[upl - ga~,g[vp]) 
(n) (n) (n) 

I cry p _ _  p p + 2g (g[,p]D ,:rv g[ap]D ,,,,+gt,,a]D ~,,,) (12.19) 

for n > 0. The solution of equation (10.20) is a fix point of (12.18) or (12.19). 
Let us try to solve this equation using the iterative method based on (12.19). 

Let us define 

( . +  I) (n) 

D ~'~,,, = N"O~J, ,D/~a  (l 2.20) 
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(n) 

such that for n > 0  we have (12.19) and D'~u~ is expressed by (12.17). We 
get 

(n+l) (n) (n) (n--l) (n) (n--l) 
1 a t :  p Da~,,~ - Dau,r = ~g [gt~p~(D ~v-  D%~ ) +gt~pl(DPu~ - DPua ) 

( n )  ( n  - I )  

- g t ~ ( D % -  D%~ )] (12.21) 
for n > l .  

The tensors DPu~ form in a natural way the 64-dimensional linear 
(vector) space. Let us define a norm in this space: 

IIDII = max ]DP~,vI (12.22) 
p , , u , v  = 1,2,3,4 

Now this space is a Banach space. Using (12.14) and (12.15), one gets 

(n+l) (n) ( l ) (n) (n--l) 
I1 D - O l l < 2 4 a  1+ l i D -  O 11 

1 - 4 a  

( n )  (n  - -  1 ) 

< 7 2 a ] l D -  D tl (12.23) 

If a < 1/72, the transformation (12.20) is a contraction and according to the 
Banach theorem it has one and only one fix point such that 

(o) 

D'~u,~ = lim ( N")'~pP~'~,~DtJp~ (12.24) 

where N" is nth interaction of the transformation (12.20). The limit is under- 
stood to be with respect to the norm (12.22). 

Now we can write (12.24) in the form 
( ~ )  (o) 

Dau,~ = Nap ~r,~DP~s (12.25) 

where 
(0o) 

Nat~ ~u~,~= lim (N")ap~,~ (12.26) 
n --~ cx) 

The last limit is understood in the sense of the usual linear operator topology 
generated by the topology of the Banach space. In this way we get, in the 
weak-field approximation, 

X% = rap, + D % 
_- 2zra 2 (o~) 

= F a p r - - -  N a  ~p~rg'~VSP(2g~agtpvl 
3 

- 2gavg(p~) + 2gv~g(p,~) - g~gEapl 

+ g~gt~pl - ga~gtvol) (12.27) 
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If  we use (12.27) and (9.36), we get for (12.2) 

- FxolFx,ll 21ra2mo(  l  
mo [--~r2 + F"'r \--~-r / \--d-~-~ /J 3 ~'~'r) 

x gaVSP(2g,~agtpvj - 2g~vg(p~) + 2gv~g(pa) 

(oo) d .  ~ 
+ q(g~rFra - gt~rJMU ~rPFu v) - ~ r  = 0 (12.28) 

where Mt~)U~r~ is defined by equation (9.35). Because M (~) was considered 
as the limit in the weak-field approximation for a < 1/96, we must choose 

a <mini1/72,  1/96] = 1/96 (12.29) 

Let us pass to equation (12.4). In the weak-field approximation for 
a < 1/96 we get 

mo L dr: [pyJ \--~r) ~,-~r/J 

( ,o~) dxal= 0 (12.30) +q g~rFra-gt~rlMU~rPFu~" dr / 

13. NUMERICAL PREDICTIONS OF THE THEORY 

Let us pass to equation (8.4). We get here an additional term for the 
Lorentz force 

q--- gt~rJ Hraua (13.1) 
mo 

In the Moffat theory of gravitation there is an exact solution which is spher- 
ically symmetric and static (Schwarzschild-like solution). It has the following 
form 04) : 

- (1  -2m/r) -1 0 0 
0 - - r  2 0 

guy = 0 0 --r 2 sin 2 0 

--12/r 2 0 0 

12/r200 1 

( 1 - 2re~r)( 1 + 14/r 4) 

(13.2) 
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For  the inverse tensor g"V we have similarly 

F - ( 1  - 2m/r)(1 + 14/r "1) 0 0 - lZ /r  2 q 
vv | 0 - 1 / r  2 0 o 

r g = /  0 0 -1 / (1  "2sin 2 0 )  

L 12 /r 2 0 0 (1 - 2m/r)-t.] 
(13.3) 

where m is the mass and 12 is the fermion charge. Let us estimate the contribu- 
tion of  (13.1) to the Lorentz force term on the surface of the sun, using 
(13.2) as a metric. In the Moffat theory (45) 

I= le = (3 .1 -0 .5 )  x 103 km (13.4) 

and we have for the radius of  the sun 

R e =0.7 x 10 6 km (13.5) 

Thus, on the surface of  the sun we get 

- IS "~10 -6 (13.6) 
we - R--~o - 

If  we consider equation (4.9) for (13.2), we get 

H , v = F , r  (13.7) 

We get 

q--- gt~rl Hrlju " = q gta rl Frpu# (13.8) 
mo mo 

But the only nonvanishing component of  gtarl is 

g041 = _ we _ 10-6 (13.9) 

and the contribution (13.8) to the Lorentz force is 10 -6 in comparison to 
the usual Lorentz force term. Thus ,  it is negligible in the solar system. 
However, for a neutron star we have ~34) 

lN=7 km, RN=6 km, wn,~ 1 (13.10) 

and this new term should play a role. Unfortunately, only g~ 
Thus, we only have a new term for the electric part of the electromagnetic 
field. It is the same for the new term in the Lagrangian 

2(g t" ViE, v) 2 = 2W~v (Fj 4) 2 = 2w~E~ ( 13.1 1 ) 
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The electric field does not play any important  role on the surface of neutron 
stars, in contrast to the magnetic field, and this does not contradict observa- 
tional data. 

It is interesting to ask if this statement will hold in the case of nonzero 
external sources. In order to do this, let us consider equation (10.18), 

47r ,ot 
O~H u~ = - - j ~  (13.12) 

s ~ 

where 

t o t  , C 

J~ ~ =J  ~ + 2cS'(g[U V]Fu v) + ~ g[~a]0a(g[U VlFu v) (13.13) 

In equation (13.13) we get an addition effect, i.e., a new term in the total 
current 

27rS~(gI~ ~]F~) (13.14) 

Let us estimate the influence of this term in the solar system and on the 
surface of  a neutron star. In order to do this, we consider a simple model 
of  dust with convective electric and fermion currents, 

j'~ = cqpu '~ (13.15) 

Sct =f4puU (13.16) 

where u s is the four-velocity of  the dust, p is the density of  the dust, q is the 
electric charge of  a dust particle, and f 2  is its fermion charge (notice that 
the constant a 2 does not appear here because we consider only one kind of 
fermion and a2=f2). Let us consider an effective electric current on the 
surface of  the sun, 

where 

j~' =j'~ + 2cS'~ (g[U'q F~,v) = u'~cp (q -  ~ Eo ) = cqerf pu '~ 

qefr = q - ~ Eo  

In equation (13.17) we use that ~34'65) 

g [ ~ 4 1  = _ w o  = \-R-oU 

(13.17) 

(13.18) 

(13.19) 
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and 

F14 = Eo (13.20) 

is the electric field on the surface of the sun, lo is the fermion number 
parameter for the sun from the nonsymmetric theory of gravitation, and Ro 
is the radius of the sun. We also have ~63) 

12 =f2N o (13.21) 

where No is the number of protons for the sun.f f  is here a universal constant 
(fermion charge for a nucleon). Using equation (13.21), one easily gets 

41~mp 
qerr=q R~Mo E o=q-Aq (13.22) 

where 

M o  
N o _  ~ (13.23) 

mp 

M o denotes the mass of the sun and mp the mass of the proton. Let us 
estimate the contribution of Aq to q~ff: 

Aqo_4l~q R2o m v Eo (13.24) 

One easily gets 

where 

If we pu(75) 

we get 

IAq ---6 x (13.25) 
Eo 10 -36 

q o [esu/cm2] 

q -~ 4.8 x 10 -36  eSU (elementary charge) (13.26) 

M~ 1.2 x 1057 (13.27) 
mp 

Eo - 8 • 106[esu/cm 2] 

Aq _~ 10_29 
q o  

Thus, it is completely negligible on the surface on the sun. 

(13.28) 

(13.29) 



Nonsymmetric Kaluza-Klein Theory in EM Case 691 

Let us come back to the formula (13.13) and estimate the value of an 
electric field for which we have screening of the electric charge. This means 
that 

and 

In this way 

qe ,~0  (13.30) 

E=Es~r-4 mp ~ 1 o -  Lcm~j 
(13.31) 

ef t  

j u ~ 0  (13.32) 

for E = Escr. 
Let us perform similar calculations for the surface of a neutron star. 

We get 

412~np 
R2Mo EN (13.33) qe~r = q 

We have for a neutron star (34"65) 

Thus, 

and we get 

If  we put (76) 

we get 

WN=R-~u~-- 1 (13.34) 

lOIN mp Aq 4 2 2  
q N - q  R~v Mo EN (13.35) 

 6x10-3~  ,3.36, 
N [esu/cm 2] q l  

Eu---0.33 x 10 t~ esu (13.37) 

Aq 10_19 q N_~0.2 • (13.38) 
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Thus, Aq is completely negligible on the surface of a neutron star. Let us 
estimate the value of an electric field for which we have screening of the 
electric charge, i.e., 

We get 

q~r~O (13.39) 

E~ _ q R ~  M o ~ l . 6 x l 0 3 0 [ e s u  ] 
8 l ~ l ~  m v Lcm2J (13.40) 

similar to the case for the sun, equation (13.40) indicates 
tot 
j~---0 (13.41) 

for E=  Escr. 
Thus, the additional term for the current does not contradict any obser- 

vational or experimental data for the solar system or for the surface of a 
neutron star. 

Moreover, it is possible to predict significant effects by finding exact 
solutions of the full field equations. This is possible using the more general 
metric 

where 

- o o  o W 

0 - r  2 0 

gu~= 0 0 - r  2sin 20 

- w  0 0 7/ 

(13.42) 

[ ]' a =  1 -2m+f l ( r )  
r 

l 2 
w=--  (13.43) /.2 

Such solutions have been found and we discuss them in Sections 18-22. 

14. SPIN SOURCES. WEAK-FIELD APPROXIMATION OF THE 
GENERALIZED CARTAN EQUATION 

In Ref. 74 we deal with spin sources in NGT (nonsymmetric gravitation 
theory). In this way we construct an Einstein-Cartan-Moffat theory of 
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gravitation. (74) We also consider spin sources in the nonsymmetric Kaluza- 
Klein theory in Section 11. We derive the generalized Cartan equation which 
connects the spin density tensor and the generalized contortion tensor. This 
equation is algebraic (generalized contortion does not propagate). We have 

8zGN 
gPvKPcrcr + g/~PtCPav = C 3 gPvgPrS~ (14.1) 

Ic Plt cr = - -  l~ Pcr p ~ l~ Plj p = 0 

Let us solve this equation in the weak-field approximation, i.e., let us suppose 
conditions (11.3). In order to do this, let us rewrite (14.1) in the following 
way: 

8ZGN 
p P __ gpvg~,/~S~r p'e gpvK u~,+gpuK ~v-  c3 

[8ZGN ~ or 
-- ~ T  gpvg[,uH'3~ -{-g[ppl~CPav) (14.2) 

Let us consider the following equation: 

(o) (o) 87fGN 
P P = -  (14.3) gpv tC u~+gprK ~v c3 gpvgr .Sa  pr 

where 

(o) (o) 
1cPpa -t - IEPo-p -~- 0 

The solution of equation (13.3) is as follows: 

r 1 8]~GN pr pr 
tcP~'r 4 ~ (gr~S~ -gr~S~ ) (14.4) 

Let us consider the following transformation (for n > 0)" 

(n+ I) (n+ I) 8~GN 
gpv KP/~ +gPu g'Pav C 3 gpvgr. S~~ 

81TGN (n) ) 
- \  c3 gpvgt~,rlS,~Pr + gtupltc%v (14.5) 
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or equivalently 

for n>O. 
We get 

(,+I) 1 8~TGN ,~ p~, 

(n) (n) 
_ 2  p _ p 

2(gLup]K o-v g[o-p] K" or) 
(n) ~(~) 
IgP~v "}- IfPvr ~ 0  

Kalinowski 

(14.6) 

(14.6a) 

where 

(n + 1) (n) (0) 
~cP~.. = Mava,,PrtC~'~ ~ = ( Mn+ l)a.BaP~, tC~aB (14.11) 

for n > 0 defined by equation (14.7); tc(~ is expressed by equation (14.4). 
M" is the nth iteration of the transformation (14.7). The limit (13.10) is 
understood to be with respect to the norm (14.8). We can write (14.10) in 
the form 

(~) (o) 
IcPu,. = M ~ J ,,~ ~ 'a~ (14.12) 

(wo) 

Mat~P~Pz = l im  ( M " ) ~ J , , P  r (14.13) 
n ~ a o  

where we have 

(n+ 1) (n) (n) ( n -  1) (n) ( n -  1) 
I p t<P.(~ - - t fPp (~=- -~ [gLup] (  If (~v-- ~P~v )--g[~pl(KPpv - ~P,uv )] (14 .7 )  

The skew-symmetric tensors ~Ca~v form a natural 24-dimensional linear 
(vector) space. Let us introduce the following norm in this space: 

]]x[] = max [tcau~l (14.8) 
a,, l t ,  v = 1,2,3,4 

Thus, this is a Banach space. Using (14.7), (14.8), and (11.3), one gets 

( n + l )  (n)  (n)  ( n - - I )  

]] ~: - x l l < 4 a l ] ~ : -  ~: 1] (14.9) 

Thus, the transformation (14.7) is a contraction i f  a < I / 4  and according to 
the Banach theorem it has one and only one fix point such that 

(0) 
~cP,~ = lim (M")"~, ,Prtc; '~  p (14.10) 
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The last limit is understood in the sense of the usual linear operator topology 
generated by the topology of  the Banach space. Thus, we get 

8zGN (oo) 

~,r~ ~ p ~ c r~ (14.14) 
K P p a  = -  C3 ,v.~ p a r ~ r [ a ~ f l ]  

]n Section 11 we use the so-called effective energy-momentum tensor: 

err C 4 
T ~  = Tua - - -  [tca+~_~ + ; a "  xa~rxrup 

8zGN 

- �89 gu~grV(tr ~+ v- r + ;a - ~r (14.15) 

Using equation (14.14), one easily gets 

4zG-  (~) (~) d._ pc 11,1v P fl 71,r ~b r ~ r m 6 ~  ~ ~ca 
- - - ' - ~ 3  ~v~ a r toZV* p fl ~c~5[vOp] ~;tr[Vor 

�89 g . . gr  ~ [((0~ 
= -  MV'r_~ ~+ . c oo~ v+ aBa[~,o4,] ] ;,e 

(m) (co) 
•  r e .*~' p - .  e Ca_ e p~-l'~ - - - ~  . . . . .  r r a p~;a[v,o~] ~,ro, op] j j  (14.16) 

Thus, we get a spin-spin contact interaction similar to that in Einstein- 
Cartan theory3 77) In the case of a weak field we can write in the place of the 
covariant derivative (semicolon) the partial derivative. We can omit terms 
which are quadratic with respect to the spin density tensor. In this case we 
can also use the zeroth-order approximation for rPu,,, i.e., 

(o)  = _ 21rGu 
xPu,~ = tcP,,,~ c3 ( g r u S ~ p r - g r ~ S S  r) (14.17) 

Thus, we can write 

T,~ = T, .  +~  - ~  ( g r . S , P r -  gr.S.~r) 

1 ~ 1 
= T ~  -4- --OX p ( S J ~  - S J ~ )  +~ 0 - ~  (h(r~)S~r_ h(ru)S ~r) 

1 0 
4 0--X -~ (htr~]S~ hrr"jS" ) (14.18) 
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where 

SaOu = r/ruSa or 

K a l i n o w s k i  

15. LINEARIZATION OF THE N O N S Y M M E T R I C  K A L U Z A -  
KLEIN (JORDAN-THIRY)  THEORY IN THE 
ELECTROMAGNETIC CASE 

Let us develop a linearization for the tensor gu,, 

gu. = r l u . + h u .  (15.1) 

where r/u. is a Minkowski tensorJ 78'79) We have 

I 2 

gU'~g , ,~=(r /u '~+h"~+hU'~+.  �9 . ) ( r h , , ~ + h , ~ , ) = 6 ~  (15.2) 

From (15.2) we get 

1 

h u " =  - r/u'%fft3htj,~ (15.3) 

2 1 

h u " =  - r/"t~hUUht~,, = r/"~r/urr/~'~h~rh~ (15.4) 

and 

gU,= r/u, _ r/u,%l ,,ht~, ~ + r/u~'r/ ,,~ r/C, ahtjrh,~, ~ + . . .  (15.5) 

Let us write equation (4.9) in a more convenient form, 

H/~ - gr~[gtp~lH~;~ + gtT~lHt~] = F ~  - 2gt~lg~rFt~7 (15.6) 

Using equations (15.6), (15.5), and (15.1), one gets 

H[3~ - ( r/r8 _ r / ~  rlSr + rltrr r / rpr /aEhcrph~)  . [htazlHr ~ + htr~lHa8 ] 

= FB~ - 2htz~lFar(r l  ~7 - r16%lr'~h~r + r/a~r/~'Pharhsr (15.7) 

Let us expand H ~  in a power series in hap: 

(0) (1) (2) 

H ~  = H~a + H~a + H~a + .  �9 �9 (15.8) 

From (15.7) one gets 

f0) 

H , a  = F~a (15.9) 

O) 

Ht~ ~ = I/~a(ht~alF~.a - ht,~lF~. ~ ) ( 15.1 O) 

H ~o,~ = r/~"~ r/P'~[htp~,)(ht,~]F,~ ~ - htpsjF~)] ( 15.11 ) 
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Thus, we get for H~ a up to the second order in h 

H/~a = Fp~ + (7/ra _ h(ra)) (htaalFy ~ _ h[,,alFra) (15.12) 

where 

h (r~) = q ~  oath(oct) (I 5.13) 

Let us pass to the electromagnetic Lagrangian in the nonsymmetric Kaluza- 
Klein (Jordan-Thiry) theory 

1 
, -~em = 8"-"~ [ 2 ( g [ P  v]Fl't v)2 - -  apctgya] 

1 
- [2(g tu VJFu v)2 - g ~  gr~Ha rF~ ~ ] (15.14) 

8re 

Let us expand * ~ e m  in a power series with respect to h~o, 

(0) ( l ) (2) 

, ,~em ~--- ~,~em"[- ~-~/Tem"~'- ~ e m " ~ -  " " " (15.15) 

One gets from equations (15.14), (15.12), and (15.5) 

(o) 1 
, , ~ e m  = - -  tlflPtlTaFpygpa (15.16) 

8Jr 

( l)  1 ~flO" ~/tt r 
s t q +q~r (15.17) 

(z~ 1 [q~,~(2rl~q~aOra + rlm, rlr~rl~a + rl~,~ rlr~rl~a_ q~rlr~rl~ ~ 

In the first order of  approximation in h, v = g, ~ -  r/u ~ one gets 

1 
~ e ) . -  [rlaurlr'~FarFu,,-(qP~q"~ + qar . FprF~,] (15.19) 

87r 

1 
2 ' r  g(PU)g(r'~ (in the first order for huv) (15.19a) 

8Jr 

Thus, one easily notices that there are no skewon-photon terms up to the 
first order of  approximation in hu~. The skewon field h[u~ 1 couples to the 
electromagnetic field from the second order of  approximation. Thus, 
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skewon-phonon interactions are negligible in the linear approximation. Let 
us pass to the Lagrangian for the scalar field in our theory, 

(15.20) 

The field u / i s  of course uncharged. 
Let us expand ~sc~, (W) into a power series with respect to h~r i.e., 

We get 

(o) ( I ) (2) 

(o) 
~s = 0 (15.22) 

(I) 
~ = 0  (15.23) 

(2) 
~ s c a l  = rlctVrrUPrlP~'htct#lhtyv]Utt,zW,p (15.24) 

It is easy to see that the field W does not propagate if ht~a] = 0. Thus, the 
propagation of the field te is a purely nonsymmetric effect. This means that 
the "gravitational constant" is really constant if the skewon field vanishes. 
Let us suppose that the field W is weak. This means that 

Iq'l << 1 (15.25) 

Thus, we expand around W = 0 (i.e., around the nonsymmetric Kaluza-Klein 
theory). We easily get 

e -3'v = 1 - 3ug + 9ug2 + . . .  (15.26) 

The field W is the scalar field connected to the gravitational constant. The 
field ug is the scalar part of the gravitational field. Our approximation pre- 
sented here is up to second order with respect to the gravitational field, i.e., 
with respect to h,v=guv - rh, v and W. In this way one easily gets for the 
Lagrangian in the nonsymmetric Jordan-Thiry theory (apart from the Lag- 
rangian of the pure gravitational field from Moffat's theory of gravitation) 

(0) ( I ) (2) (2) (0) ( I ) (0) 
,.~P = ( . ~ e m  -[- ~ e m  -'}- ..o~ern) "1- ~(P scal - -  3 t I / ( . ~ e m  "[- ~.-~ em) "1"- 9 ~ ' / 2 ~ e m  ( 1 5 . 2 7 )  

It is easy to see that we get in this approximation the pseudo-mass-like term 
for the field W 

(0) 
9 2 (~5~cm)W (15.28) 
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and an interaction term 

(o) O) 
--[3(~a~m + ~aern)]tlJ (15.29) 

The last expression (15.29) could be treated as an interaction of  the field 
with sources, i.e., 

�9 . J (15.30) 

where 

(o) (I) 
(15.31) 

of  approximation in is a external source for W. In the first-order 
hu v = g, v - r/, v and W, one gets 

1 
s = - 8--~ [ rlp~ rl rU FprF" '~ - ( rlp'~ qU~ +rlP:  rlu,~) rl r~h~,~FprFu,~] 

- 3~(17 pp rlr"FprF~,~) (15.32) 

i.e., we get an interaction term for the field W, 

[3(rl p" r 1 • (15.33) 

The field W interacts, due to the term (15.30), with the electromagnetic field. 
Despite this, the field W is uncharged. The propagator of  the field W vanishes 
in zeroth order of  approximation with respect to h u v = gv ~ -  r/, ~. It vanishes 
also if h t~ l=0 .  In the second order of  approximation this propagator  
depends on the field htuv]. The exact forms of  ~('P(0)em, ~(l)em, and ~ce(2)~m are 
given by equations (15.16)-(15.18). 

Let us remark on the convergence of  the series appearing here. They 
converge for a sufficiently small h,~. However, all the functions ofhu~ consid- 
ered here (i.e., Hu,,, g~v, ~em) are well defined for any huv. They are rational 
functions of this variable. Moreover, the exact form of  all these functions 
are hard to get. 

16. EQUATIONS OF MOTION FOR A TEST PARTICLE IN T H E  
LINEAR APPROXIMATION 

Let us consider the equations for a test particle in the nonsymmetric 
Kaluza-Klein theory for p =  1 or ~ = 0 ,  "8')9'z5) 

Du~ + q g~rF~pu p - q--- g[~JHrpu p = 0 (16.1 ) 
dF m o I~Io 
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where D / d r  is the covariant derivative along the line with respect to the 
connection o5~, q is the charge, and m0 is the mass of a test particle. 

Using equation (15.5), we easily write (16.1) in the second order of 
expansion with respect to hu,, and we get 

Du~ + q--- (r f~r-  rl~'~ rl~'~h,~ + rl~arlr~" rl~h~ph~,,)Fr/ju p 
dr mo 

+ ! (-ht~r] + rltatplrir]'rrlr~h6ahp~) 
/no 

x [Fra+(q'~-h('~*~)(htra]F~,a-hta8]F,~r)]u~=O (16.2) 

If q~ (or p) is not constant (the general case), we find in terms of qJ 

Du '~ t q__ ( rf'~' _ rl'~~ rlr~ h,,~ + rl~P r['%l'~h~oh,r,)Frau a 
dr rno 

+ q-~ (_ht,,rl + rl rt" rlrl'~rl~h~t,h,~ ) 
mo 

x [Fra + (71' ~s - h (a~)) (htr81F~fl - htaslF,~r)]U 1~ 

_ l (  q12 
-8 \-~o) (V2)'p( rlm~ - rl~w rlv)t3h~'~) 

- W,a(rl p~'- rl'~WhVJt3hv u + rlr('~qo)'~rl,,uhurh,~) =0 (16.3) 

h t~~ qutt~rl'~l"h~,,, (16.4) 

It is easy to see that the skewon field has an influence on the motion of 
a test particle to first order in the expansion h u =gu~-  r/,~ and the scalar 
field W. 

17. THE GEODETIC EQUATIONS IN THE GENERAL CASE AND 
THE GEODETIC DEVIATION EQUATION 

Let us consider the geodesic equation on P in the nonsymmetric Jordan- 
Thiry theory, which becomes an equation of motion of a test particle on E 
after taking a local section of P, 

~_qff_(g,WF.p_gt,,.lH~,~)up__ ~ g(~.) 1 =0  (17.1) 
dr mo ,a 

For o5~, Fur, Huv, and p well defined on E, it has the same form as 
before. Equation (17.1) becomes equation (5.7) if p =  1. 
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Let us find the physical interpretation of the additional term 

1 & ~(8,o 1 (17 .2 )  
- ,m0J 7 8 

This term describes the scalar, velocity-independent force acting on 
the test particle. The force depends on the "chemical composition" of the 
particle, because it has in front a factor (q/mo) 2. Thus, it could be considered 
as a new type of the force, maybe the "fifth force."~s4'ss) In order to examine 
this, let us suppose that F u r = 0  (Huv=0) and consider the following 
equation : 

/)u ~ 1 q_ ~(~8) 1 =0  (17.1a) 
dr 8 \too~ ,8 

Let us multiply both sides of (17.1) by g(~r)u in order to understand 
the effect of an action of the scalar force on the test particle motion. One 
easily finds 

dr dr / 16 mo dr 

where 

ua dX a 

dr 

It is well known that 

and 
-~r ,8 dr 

dx ~ dx 8 
m0g(~8) dr  d r - E p  (17.4) 

has an interpretation as the total energy of a test particle in a rest frame. 
Thus, the scalar force changes the energy of a test particle in the following 
way: 

dEp_ q 2 d ( ~ )  (17.5) 
dr 8m0 dr  

Equation (17.5) goes to the first integral of motion 
q2 

- - -  = const (17.6) Ep 8m~ 2 

q2_2__ 
g(c<~)uau l~ -- 8m~ 2 = const (17.6a) 
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Thus, if the test particle is taken as a model of a charged planet in the 
solar system, the rest mass of a single planet will change during its motion 
according to equation (17.6). This result is easily understandable because of  
the physical interpretation of the field p. This field is connected to the 
effective gravitational constant 

Geff = Gup 2 (17.7) 

(GN is Newton's constant). 
Thus, if p ~ const, the effective strength of the gravitational interaction 

changes during the motion and the energy of a test particle changes. More- 
over, the total energy of a test particle and the field p is constant. Such a 
change must be secular if considered in the solar system and this is the case, 
because the field p seems to be massive with a short range. 

In general the scalar force can act as a "friction" or an "amplification" 
force. If  such an effect exists in the solar system, it must be connected to the 
global (cosmological) change of the effective gravitational constant coming 
from the cosmological solution in the nonsymmetric Jordan-Thiry theory. 
Unfortunately, such a solution is unknown. 

For this it seems that the p = 1 case is quite important. It corresponds 
to the Ansatz ~'55(x)=const and leads to the normalization of the four- 
velocity during the motion of a test particle, 

g~au~(r)u~(r) = const (17.8) 

The general five-dimensional case does not preserve this condition. 
Thus, if we demand the condition (17.8) in this nonsymmetric Kaluza-Klein 
theory, )'55(x)= const is not an Ansatz, but rather a conclusion from (17.8). 
In the next section we deal with this case in more detail, including field 
equations and their properties. 

Let us consider the geodetic deviation equation in our theory, 

u~Vsv A - [Vg, Va]u'~uS( M = 0 (17.9) 

o r  

uSVsv A + R A CMnuC~Mu ~ -  QNMsVNu A~MuS = 0 (17.9*) 

In GRT one has 

.  aX =o t - /~pra (17.10) 
dr 2 ~ dr  

In the presence of nonzero torsion one gets 

u~Vpu " + R ~'pr~u~ru ~ - O vupVvuU~ ~'u tJ = 0 (17. I 1) 
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where u~=dx~/dr  and v~=d(~/dr.  We suppose, of  course, as usual 

uBVnu ~ = 0 (1 7.9a) 

In G R T  we have 

and in the presence of  torsion 

- - = 0  (17.10a) 
dr  

ut3Vt3u" = 0 ( 1 7.1 1 a) 

In this way we consider a generalization of  the geodetic deviation equation 
to the five-dimensional case and in a non-Riemannian geometry. In 
GRT,  (~(r)  is called the geodetic deviation vector and equations 
(I 7.1 0) and (1 7.1 0a) give a physical interpretation for the curvature tensor. 
Using equations (4.8), (6.9a)-(6.9h), and (6.1)-(6.4), one derives from 
equation (17.9.). 

(uP~v  a + ~a vU~(,u ~_ O_~ (~)~vua(Uup) + p2oSg~P(Hr~_ 2Fr~)u r 

1 q ~ ~ 1 +_ __ g H~rv +__ v 5 q_if_ gtra)p,r + 2p2g~p[gOaH~pF~ 
2 rno 2p mo 

- g"r(Htvir I - 2F[~lrl) �9 HI/31~]] " ua("u v - (S[Vu(p2g~Hoe) + pHau~,(r~)p, r 

+ p g ~ ( H , v -  2F u ~)ga~ra)p.r] �9 uau u + q {2V[u[p2g~a(H~]o- 2F~]a) 
2pmo 

+ P2g~a(H,a - 2Fra) O r ~(~) + 2p2~(r~)p.rF u 

+ 2pg~agat~(~)p.l~l(H~]a - 2Fu]a) + V,(p2g~H6v) + pHu~,(r~)p, r 

+ pg'~a(H~,: - 2F.a)g~f~)p.r]}uV(~' + ~ [V~'(2pg(ra)P'~') 

+p'ga~grt3Ha~.(Ht~u-2Fm,)-gau,(ra)~.c~a)p.rp,~](q (~ -2pZ( 'u  u) 

+ q 

2m0 
0~ut~(F) ~'*'ut~g~ r (H~r - 2Fvr) 

-(g{aV)Hav-gVaFo,)Vvu~(~"q-2p2~Su" ) 

I q 
+ -  - -  (g~aV)Ha, - gVaFau)g~e(Hv" - 2F~,) ~" q -  2p2~'stg ' 

2 m0 m0 
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+ 2p2(Fut3 - HutJ)~UuOg~H~rur - _ q (Fuo - Hut~)~(r~)p, r 
mop 

+ (2p~"u u-~q ~'u)= 0 
mo 

(17.12) 

and 

do5 r p ~ g~o~tat~)p.~ufl +2 ~ + Hrpv u + gro~(~O)p,~v r 
dr p p mo 

+ (2~tuHvl a + Hrt3 ~ ru ~([.) + 2 go~(.,)p,.F u 
\ P 

~p~Oa~ p..j+P2gerI-Iat3Hru 

+ p2 

+ 1 g6r~r a Q ~ v(F) -- 2p2g~aHl~[v(Hul~ - 2Full) 
P 

+ 2  z.(~)~-(~r)~ ~ + ~u(~g~6~(~a)p,~)+p2g~rH~HT~ 

+ --~ gaugvr,(aa),(#r) p,ap,O] ~U u v 

+q.___~ [p,(r,)P,rHt3 u _p,(,,a)p,a(Hu6_2Fua)j(2p2(SuU_~o ~ ~'u) 4p4mo 

"-2p2(g(aa)H~13-gaaF~lj)(Hrv ur+ cl ~ .rv.z'(ae)'~',~/~((Sut3 2mop (u/) 
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_ P2 (F~. - Hua)uagre~(~)p,~(Uu r - -~  gtael~('a)p,.g. ~(rV)p,ruU 

x ( 2 p ( ' u e -  ~'e q ) =  0 (17.13) 

Let us consider a simpler case of equations (17.12)-(17.13), i.e., the 
classical Kaluza-Klein theory case. One gets from equations (17.12)-(17.13) 
for Fl,~ = H~,~ and p = 1 

(ue~ S + ~ %v,,P r ) + v~gop r J + l_ q__ g'~ 
2 mo 

+ 2(ga"FaeFu v + g"~'Pp, lrtFlelul)ueffUu "-  ~SVu(ga,~Fae)ueuU 
1 ~ 

+ -  __q [~u(ga'Fa~) - 2~tu(g'eFvla)]u"gu 
2 m0 

q ga,~gTaF~rFa~,(q(u_2~SuS,)=O 
4too 

(17.14) 

and 

dv 5 
G S u  e -  ~vGeuV(.u e + 4"~g~y~eG.ueu" + 

q 

dr  2m0 
g ~" F 6 v F ~ . ( "  u v = 0 

(17.15) 

where we use 

and 

~.A = (C,  ffs) 

\ dr  ' dr  / 

We have as usual q/mo=const and for u"=dx'/dr 
(17.1) or the simpler equation in the Riemannian case, 

/3u" ~_q g'UFup =0  
dr  mo 

we have equation 

(17.16) 
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Moreover, in the Riemannian case we have 

us_dxS_ 1 q 
dr 2 rno 

(17.17) 

o r  

x 5= q ( r - r o ) + X o  5 (17.18) 
2m0 

Moreover, in this case we consider a flow of geodesics given by x A = xA(r, o-) 
and 

  =(oxo ox' I , 
~,ao- ' 0o"/I,,=~0 

cr is a parameter such that for every o-i #o-2, xA(r, Ol) and xA(r, or2) are 
different geodesics. One can say that we have a family of  geodesic curves 
F(tr), o-E U c  R'. The geodesic considered by us is F(cr0), i.e., for o- = o-oe U. 
Thus, 

, ,  1 d ( q ) dx~ (17.19) 

(17.2o) 
2 do ' \m0 ]1~=~0 

do s 
- - = 0  (17.21) 
dr  

In this way v s is an integral of motion and equation (17.15) is redundant. 
Equation (17.14) after the substitution of equations (17.19) and (17.20) 
represents together with equation (17.16) an analogue of the geodetic devia- 
tion equations for a charged particle equation of motion. 

In the general case (i.e., non-Riemannian with p #const)  the situation 
is more complex. Now we have 

dXS_uS_ 1 q 
(17.22) 

dr  2p 2 mo 

where 

p=p(~, ~ ) = p ( x ( r ,  ~)) 
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and 

x5 - 1 q [ "  (17.23) 
2 mo .Jr p2(z'' o.) 

~-5_ 1 O q o. + (17.24) 
2 0o. 0 p2(r'  o.) *= *~ do  ,~=,~0 

v,_d~5_l 0 (q  o. 1 )[ 
dr 2 o" (17.25) 

After substitution of  equations (17.24)-(17.25) into equations (17.12)- 
(17.13) we get the geodetic deviation equations in nonsymmetric Jordan-  
Thiry theory (NJTT). They are analogous to the deviation equation for the 
charged particle equation of  motion in NJTT. 

Let us remark on a physical interpretation of  the vector ~-A = (~.~, ~-5). 
3"he vector ~-A, "geodesic separation," is the displacement (tangent vector) 
from a point on the fiducial geodesic to a point on a nearby geodesic charac- 
terized by the same value of  an affine parameter T. Thus, v A = (v ~, v 5) means 
a relative "velocity" and uSVsv A a relative "acceleration." The relative 
"acceleration" equals, according to equation (17.9), a commutator of covari- 
ant derivatives. Thus, we get "tidal forces" in NJTT (five-dimensional case), 
i.e., for charged test particles. Equation (17.12) gives us "tidal forces" for 
charged test particles in NJTT. In this equation we get gravitational "tidal 
forces" from NGT,  electromagnetic "tidal forces," and additional effects 
which can be treated as gravitoelectromagnetic tidal forces. The scalar field 
p is also a source of  additional "tidal forces." These new effects are "interfer- 
ence effects" between gravitational and electromagnetic interactions 
described by NJTT. The commutator  in equation (17.9) can be treated as a 
five-dimensional analogue of  "tide-producing gravitational forces." In our 
case this is "tide-producing gravitoelectromagnetic forces." Our equations 
are defined on a bundle manifold P. Due to the fact that U(1) is Abelian, 
we get exactly the same equations. 

Finally, let us remark that equation (17.12) represents tidal gravito- 
electromagnetic forces and equation (17.13) is a new type of  equation. It 
governs the relative change of  (q/mo)o" for different test particles via v 5 [see 
equation (17.25)]. 

18. FIELD EQUATIONS FOR THE N O N S Y M M E T R I C  KAL UZ A-  
KLEIN T H E O R Y  (CASE WITH p = 1) 

Let us consider a simpler version of our theory, i.e., the nonsymmetric 
Kaluza-Klein theory (NKKT).  In this case p = 1 and from the Lagrangian 
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of the theory [equations (6.5)] we get the field equations 

_~(if') - ~ g ~ R ( w )  = 8 ~ . ~  (18.1) 
gruel ~ - 0  (18.2) 

gu ~,,~ - g r  - gu  ~['r ~ = 0 ( 1 8 . 3 )  

Or (//~u) = 2gt~t~lO~(gtU,,lFu ~) (18.4) 

We can rewrite equation (18.4) 

~u H ~u = 2g~tj(g~U ~lFu ~) (18.4a) 

Recall that the current on the right-hand side of equation (18.4) has 
the property of the topological current, because 

1 gt~,18~ 8tj(gtU~]F,~)=0 (18.5) 8,~J '~ = ~ Oa[g,[~"ld" (g4u'lF u ~)] = ~ ~ 

modulo equation (18.2), i.e., it is conserved, by its definition. 
We have 

~ 1 
T~a =~-~ {grtJg~Ug'~Hu,H~,- 2gtU'4Fu,,F,~o 

1 /zv - ~ , , [ H  Fu~ - 2(g fu'IF u ~)2] } (18.6) 

gt,~l = x / ~  gI.~l 

H. u~ = x / ~  gt~'g'~ Ho, (18.7) 

The tensor H,~ has an interpretation as a second electromagnetic field 
strength tensor (see Section 8). We have 

e m  

g'~tJT,~t3 = 0 (18.8) 

Equations (18.1)-(18.4) can be written in the following form: 

e m  

tt+,l,+l(- ) -  8~rTEE+~1,v1 =0  

P. =0 

g~v.,~-gcvF ~,,~-gu~F , ~ = 0  

8 u (_H ~u _ 2g~Ul (gt VmFt v~j)) = 0 

(18.9) 

(18.10) 

(18.11) 

(18.12) 

(18.13) 
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where k~ , (P)  is the Moffat-Ricci tensor for the connection 

The condition (18.11) is equivalent to (18.2). 
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(18.14) 

19. SPHERICALLY SYMMETRIC FIELDS IN THE 
N O N S Y M M E T R I C  KALUZA-KLEIN T H E O R Y  

Let us suppose that the fundamental fields in the nonsymmetric Kaluza- 
Klein theory possess spherical symmetry. According to Refs. 71 and 80-86, 
one gets 

oa - f l  f s i n  0 

g"~= - f s i n  0 - f l  sin 2 0 

0 0 ~' 

(19.1) 

where a, /3, y, f ,  and co are real functions of  r and t, with a, ~' > O. In 
addition, 

F,4=E(r, t), F23 = B sin 0 (19.2) 

and all other components of  F~v vanish. For g,V, the only nonvanishing 
components are 

g l l  - -  ~z 
C02-- a7  

g22= g33 sin 2 0 = /J2 +f2 

g44 = a 

co2-- a 7  

g[14] ~ _ _  

g[23] sin 0 = - -  

CO 

co2-a7 

f 
f12 + f2 

(19.3) 

We suppose that 

C02-- a y # O  and f12 + f 2  :/=0 (19.4) 
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Let us suppose that H~ a is also spherically symmetric, so that 

H t 4 = D ( r ,  t), H23=H sin 0 (19.5) 

and other components vanish. Using equations (4.9), (19.1), and (19.3) it 
can be shown that 

Ht4 =Ft4  = E(r, t) (19.6)  

H23 ----- F23 = B sin 0 

The Bianchi identity (4.,) yields 

B=Bo=cons t  (19.7) 

From equation (18.2) one gets 

(D E 12 

a )" - (D2 - flz + f 2  (19.8) 

where 12 is a constant of integration. In Moffat's theory of gravitation this 
constant has an interpretation as a fermion charge. From equation (18.13) 
we have 

E _ - ( Q / 1 2 ) ( f l  2 + f 2 )  + 4fBo 
to f12+f2+414 (19.9) 

where Q is an integration constant. In the intermediate stages of calculation 
we used the following expressions for H ~ and x / ~ :  

HI4= HI4 - E  
a T -  (D2- a T -  (D2 (19.10) 

H23 __ Bo 
f12+f2 (19.11) 

x / ~  = sin O[(aT - (D2)(f12 +f2)]J/2 (19.12) 

Thus, we get equations (18.9)-(18.12) plus the algebraic relations 
(1 9.7)-(1 9.9). From equation (1 8.1 0) we get immediately 

e m  

RE231(F) - 8zc TE231 = G sin 0 (19.1 3) 

Kalinowski 
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where Cj = const is an integration constant and 

8 ] [ "  e m  

- -  T [ 2 3 ]  ~-- 
sin 0 

7 f B  2 q_ f l  4 (E)  2 

+f2 fl2+f2 
14 2 

+4f(f12~f2 f12+f2 E)  

8Bol 4 E 
.4 

fl + f o9 
(19.14) 

Equations (18.11) and (18.12) were solved in Ref. 82, in which the Ricci 
tensor was written down for such a connection. 

Note that the Moffat-Ricci tensor is a linear combination of the ordin- 
ary Ricci tensor and the second contraction of the curvature tensor. How- 
ever, equations (18.2) and (18.3) imply that ~ 

Fat~l = 0 (19.15) 

and 

]~p = [In ( ( -  g) 1/2)], v (19.16) 

so that the second contraction is given by 

- a  _ I - f l  - #  R ~t,v - ~ (F(~),v - F(v~),~) = 0 (19.17) 

Consequently the Moffat-Ricci tensor in this case is identically equal to the 
ordinary Ricci tensor used by Pantff 2) which we shall denote by A,v(F). 

Thus, we get the following equations" 

e m  

A( .v ) (F )  = 8Jr T(.  v) 
e m  

Arz3](P)- 8~r T[231 = C~ sin 0 
(19.18) 

where 

~ l 4 E 2 aBo 2 

8nT,, = a  [/2+f2 o92 ~ f12+f2 

\/32+f2 /32+f2 
(19.19) 
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Using equation (19.9), we can write the last term in equation (19.19) in the 
form 

( f-B~ 2 (19.20) 
- 4 a  \f12 + f2  + 4l 4] 

Moreover, it can be shown that 

em em 

8zc T44 = - -~  87rTn (19.21) 
a 

~ 87r om B om 
81rT~ = - - 7 ~  ~ T33=~ 8~rT~ 

s in-  O a 

j ~ n  2 j ~ l  4 E 2 

p2+f2 p2+f  

\f12+f2 f12+f2 (19.22) 

em em 

8to TI4 = - 8n" T41 

_ ro 7 1 2 ~ - 8 f B o  - B ~  
p2+f2  

-co \f12+f2 f12+f2 (19.23) 

The rest of the components of T;~ vanish. The electromagnetic Lagrangian 
in this case is 

~eem = 1 [2(gtU,,lF u,,)2 _ H ~ VFu v) 

'E 8~ 
8/l: ( a T - - ( , 0 2 )  2 \ l 4 

a ~ \-~- - ~-~] J (19.24) 

Finally, we have the following equations: 

A , , ( F )  = 8 ~ , ,  ( 1 9 . 2 5 a )  

em 

Aa4(F) = 8to 7"44 (19.25b) 
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e m  

A22(F) = 8~r T22 (19.25c) 
e r a  

A33(F) = 8~r 7"33 (19.25d) 
e m  

At231(F ) - 8zr T23 = C~ sin 0 (19.25e) 

Ao4)(F ) = 0 (19.25f) 

Using results from Ref. 82 
(see Appendix) 

e m  e m  

A22(F) - 8a" T22 1 sin 2 0 [A33(F) - 8Tt'T33] (19.26) 

so that equation (19.25d) is not independent. 
In the above 

8rc~1, = a {[412fBo- O(fl2 +f2)]2 + Bo2(f12 + f 2  + 414)2 

- 4(fBo + Ql2)2(fl 2 +f2)} 

x [(f12 +f2)(f12 + f 2  + 414)2]-~ (19.27) 

8re om 8re cm 
s;n 0 T23 = sin----0 Tr23J 

_ _7fBo(fl2 +f2  + 414)2 - f [4 fBo  - Q(fl2 +f2)]2 

(f12 + f 2)(f12 + f 2 + 4/4)2 

+ {8Bo1414Bol 2_ Q(fl2 +f2)](f12 + f z  + 412) 

+ 4f(f12 +f2) ( fBo + Ql2)2} (19.28) 

x [(f12 +f2)(f l :  + f2  + 414)2]- n 

For T~]' one finds 

e r a  e m  

8re Tj4 = 8r: T~n41 

O9 

- f12 + / 2  

x {712[412fBo - Q(fl2 +f2)]2 

_ 8Bof[412fBo_ Q(fl2 +f2)]  _ 12Bo(f12 +f2  + 4/4)2} 

x [/2(fl2 + f 2  + 414)]-, (19.29) 

and equation (19.22), one finds the identity 
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All(F),  A44(F), A33(f'), Ao4)(F), At~41(F), and Ap3I(F) are given by 
formulas from Ref. 82. For -oq',m one easily gets, using (19.24), 

1 14 [ 4 (fBo'412fBo-Q(iO2+f2)~ 2 
"s ,82 + f 2 ~ \ l 2 - f l i - ~ f ~  / 

_ l__ ( ! 4 : f B o -  Q(172 +f~)]2.']- I 
14 \ (172 +f2  + 414)z ]_i (19.30) 

20. STATIC, SPHERICALLY SYMMETRIC SOLUTION 

Let us consider a spherical field configuration such that 

Bo = f =  0 

Later we suppose that 

(20.1) 

and we have 

A,I([') aQ2(f12-412)=O 
(172+4/4)2 

A44(f') -~ yQ2(17z_4/,) =0 
(172+4/4)2 

A22(r') 17Q2(172-41")=0 
(172 + 4/4)2 

A ( 1 4 ) = 0  

e r n  

A [ 2 3 ] -  8/l 'T23 = C1 s i n  0 

. . . .  7172 _ 16/4 
8Ir Ti,4 ] = 8re T,4 - c0Q 2 ( - ~ + 4 / - ~  (20.5) 

l 2 
co = -- (20.6) 

r 2 

(20.4) 

fl  = r 2 (20.2) 

which is simply a coordinate choice. In addition, our quantities do not 
depend on time (static case). One finds [see equation (19.9)] 

Q r 4 

E= - co lZ r4 + 4l 4 (20.3) 

(substituting 1 = r2). Equations (19.29) now read 
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We get 

Q r 4 
E =  

r z r 4 + 4l  4 

It is easy to see that the function (20.7) is bounded, 

IEI <Em~• = IE(x/2 1)1- IQI 
- 412 

Taking the linear combination 

one finds 

which gives 

1 A l l  + 1-- A,4=0 
a ?' 

d 4 l 4 

s [ l~  r 14+r  4 

where B is a constant of  integration. Taking 
(20.8a) into the third equation of (20.4) yields 

d ( r a - ' ) = l - Q 2  
r 2 

r 4 + 414 

Thus, we have 

where 

B = I  

C Q2 
1 1 + - - + - - K ( r ,  l )  
a r r 

(. r 4 
K(r ,  1) = -  j ~  dr 

and C is a constant of  integration. Moreover, 

~,= l + - +  Q" K(r, l) 1+ 
r r -J 

and 

(20.7) 

(20.7a) 

(20.8) 

(20.8a) 

substituting 

(20.8b) 

(20.9) 

(20.10) 

(2o.11) 
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Performing the integration in (20.10), one gets 

, c ,  Q2 
l =  l * r •  g (20.12) 

where b 4 = 4l 4 and 

(x2 + x/~ x + 

1 
2x/-2 [arctg(v/'2 x + 1) + arctg(v/2 x -  1)] (20.13) 

The function g(x) is plotted on Figure 2. Let us examine the properties of  
the function 

1 ( b ) = g ( b )  - g  
r 

It can be shown that 

Thus, for small r we get 

C 
a -I --- 1 + - -  (20.15) 

/, 

0 . 0  

- 0 . ;  

-0..4 

- 0.6 

- 0 . 8  

- 1 . 0  

I I I I I I 
2 4 6 8 10 12 

X 

Fig. 2. The function g--g(x) versus x [equation (20.13)]. 

14 
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We can avoid a singularity in a at r = 0 by choosing 

C=O 

so that 

7 1 7  

(20.16) 

lim a - l =  1 (20.17) 
r = O  

Let us examine the asymptotic properties of a and 7/. We get 

a-I  , l _ 2 m u +  Q 2 
r ~  oo r r 2 

(20.18) 

where 

0 (20.21) 

and 

lira a - ~  = 1 
r - - ~  

(20.22) 

In the neighborhood of r = 0 one gets for our metric 

io 1~ o~ 2!2] 
guy = 0 0 - - r  2 sin 2 0 

L- l / r  0 0 1 + 14/r 4 

(20.23) 

(for r ~  0). The determinant of the symmetric part of  the metric is 

(_~)1/2 = (r4+ 14)t/2 sin 0 (20.24) 

The full determinant is 

(_g)V2 = r 2 sin 0 (20.25) 

playing the role of  the Newtonian mass. To summarize, we have 

a-~ = 1 +-~-r g (20.20) 

For large r, a clearly behaves like the analogous function in the Reissner- 
N6rdstr6m solution, with Q as the electric charge and with 

C2mN - zrQ2 (20.19) 
2~/2b 
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Thus, there is a singularity at r =  0. It is worth noting, however, that there 
is no singularity in a and only one singularity in 7, due to the (1 + 14/r 4) 
factor. Note that to, the skew-symmetric part of guv, is also singular 
at r=0 .  

Let us examine the properties of the electric field: 

Q r 4 
E =  r2 1" 4+4/4 (20.26) 

One easily sees that 

E(0) = 0 (20.27) 

and 

- Q  (20.28) E ) r2 r ~ o o  

Thus, there is no singularity at r = 0. This is similar to the situation in Born- 
Infeld electrodynamics. (87) Let us calculate the charge for the electric field. 
It is known that 

4 1 r x ~  p = n 4 i , i :  div D (20.29) 

where p is the charge density distribution and D is the electric induction 
vector. One gets 

E 
/3}r41 = N / ~  - - -  N / ~  e (20.30) 

a y-- (.o 2 

and 

x/--~p = l Q 414r4 sin 0 (20.31) 
/r r (r 4+4/4) 2 

The total charge is 

Qto,= fR x / -~pdax=-16Ql4  fo ~1 r4 3 r (r4+414) 2 d r = - Q  (20.32) 

Thus, we find the following interesting feature: the total electric charge 
defined above is the same as the charge obtained from the asymptotic proper- 
ties of the electric field E and the metric (functions a and 7). Let us pass to 
the calculation of the energy of the electromagnetic field. We have 

J 4u u4 ~'~ 1 Q2 1 (20.33) 5(g Z4/~'Fg Zn4)=T44=~ -- 
r4q- 4l 4 
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The total energy is given by 

fo ~ e,, zc Q 2 
Et~ r2T44 dr=2~f2 b - m u  (20.34) 

where b 4 = 4/4. 
This energy can be treated as the energy of  the electric field of  the charge 

Q distributed over a sphere of  radius r0. That is, 

Q2 
c2m~ = c2mem -- (20.35 ) 

ro 

so that 

4 
ro = (20.36) 

7~'C 2 l 

Let us suppose that the mass mN is the mass of an electron, 

m N  = me and Q = e (20.37) 

We get, where e is the elementary charge, 

m e t 2  _ 1"~ Q2 
2 ~  b 

(20.38) 

Thus, we get 

/ r  e 2 _ ~ r e l  / = -  
4 mec ~ 4 

(20.39) 

where the classical radius of the electron is defined as 

rc1=-~2___2.81 x 10 -13 [cm] 
m e C  

(20.40) 

Let us introduce the following dimensionless variables: 

Q Q 
(20.41) 

j" 

R = - 

b 
(20.42) 
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Using equations (20.41) and (20.42), we have 
2 

a -I= 1 +g--g(R)= 1 -q2p(R)  (20.43) 
R 

q2 R 4 
E =  _ _  _ q2/~ (20.44) 

R ? R 4 +  1 

e,, q2 R 2 1 
e = 4zr T44 r2 - 2 R 4 +  1 -qEE (20.45) 

4]rpr 2_ 2q R" 
Pg--  b4 R R4"[- 1 - q~R (20.46)  

where q is the normalized charge, R is the normalized radial coordinate, and 
/~, ~, and f~R are normalized electric field, radial energy distribution, and 
radial charge distribution, respectively. These functions are plotted in 
Figures 3-5. Recall that the radial charge distribution of our solution is simi- 
lar to the radial charge distribution for Abraham's model of the electron, (sg) 
where the charge is distributed on a sphere of radius rcl. In our case gravita- 
tional forces play the role of Abraham's elastic forces. The function 

1 
P(R) = - ~ g ( R )  (20.47) 

is plotted in Figure 6. It expresses the properties of the generalized Newton- 
ian potential for our solution. 

0.0 

-0.1 

-0.2 

g 

-0.3 

-0 .4 

-0.5 
0 

Fig. 3. 

I I I I I I I l I 

i i 

1 2 3 4 5 6 ? 8 9 10 

R 
The function E= E(R) versus R (normalized electric field) 
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Fig. 4. 

o.zs I 

0.20 

o.1~ 

0.10 

O.OE 

I I I i r 
2 4 6 8 10 

R 

The function ~=E(R) versus R (normalized radial energy distribution) [equation 
(2.45)1. 

0 . 0  I I I I I I I 

-0.1 

-0.2 

-0.3 

-0 .4  

OR -0.5 

-0.6 

-0.7 

-0.8 

-0.9 

I I I 
-1.0 1 2 3 4 5 6 7 

R 

8 9 10 

Fig. 5. The function /~R =/),(R ) versus R (normalized radial charge distribution) [equation 
(20.46)]. 

An interesting question which we can pose here concerns the existence 
of  event horizons. This problem reduces to finding real roots for the function 
a -~ = f ( R ,  q). This depends of  course on the value of  the parameter q. Let 
us consider the function 

1 
f ( R ,  q) = 1 + q2 --d g (R  ) 

1< 
(20.48) 
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Fig. 6. 
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0.15 

0,30 

0,25 

0,20 
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O.OS 

2 4 6 8 10 12 14 

R 

The function P= P(R) versus R (generalized N6rdstr6m function) [equation (20.47)]. 

We have 

and 

f (0 ,  q )=  1 (20.49a) 

lim f(R, q) = 1 (20.49b) 

The function g(R) is monotonic and negative in the interval (0, m). Let us 
take Rl~(O, m) ;  we have 

Let us suppose that 

g(n,) 
- -  < o ( 2 0 . 5 0 )  

R1 

q > I -  R, ],/2 (20.51) 
L g(R,)J 

It is easy to check that if (20.51) is satisfied, then 

f(q, R,) < 0 (20.52) 

Thus, the function changes sign in the interval (0, RI). This means that there 
exists a value Rn, e(O, R~) such that 

f(q, Rn,) = 0 (20.53) 



Nonsymmetric Kaluza-Klein Theory in EM Case 723 

The funct ionf(q ,  R)  also changes sign in the interval (R1, + oo). Thus, there 
exists a value Rn2e(R2, +oo) such that 

f (q ,  RH2) =0,  Rn, <Ri <Rn2 

[if condition (20.51) is satisfied]. Moreover, the function f (q ,  R)  has one 
minimum regardless of  the value of q. Thus, it can cross a horizontal axis 
two times at most. Hence there are two event horizons for sufficiently large 
q in general. 

Let us examine the situation with only one event horizon. The condi- 
tions necessary for the existence of  a single horizon are as follows: 

One easily gets 

f (q ,  R) = 0 (20.54a) 

d f  R)  =0  (20.54b) 
~-R(q, 

From equation (20.54) one gets 

Rg 
g(Ro) = - - -  (20.55) 

Rg+l 
(Rg+ 1) 

qo -  (20.56) 
R0 

Thus, 

Ro = 1.6787... 

qo = 1.78126... 

rH = Rob = x/2 Rol = 2.37l 

In this case the charge Q and the mass mN are 

Qo = qob = 2.531 

mO - zr(R4 + 1) l=2.48 l 
4R~ 

For  t=  10 -22 cm the total charge is 

lc 2 
Qo = 2.53 ~NN--~ 1015 esu ~-- 1014 elementary charges 

m ~ = 2.48 c2~/- ~ 10 7 g 
GN 

(20.57a) 

(20.57b) 

(20.58) 
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It is easy to see that if q > q0, we have two horizons. This also implies that 

m s  > m ~ (20.59) 

In other words, the Newtonian mass is large enough to form event horizons. 
If  q = qo, we have only one horizon and if q < qo, we have no horizons. This 
situation is described in Figure 7, where we plot the function a -~ = f ( q ,  R )  

for various values of the parameter q. 
For example, for an electron one has 

qelectron---e~x/~ lO-37 <<qo (20.60)  
4 2 l c  

Thus, there are no event horizons. It is worth noting that if there exists only 
one event horizon, the solution is unstable due to pair creation and Hawking 
radiation. Such "black holes" are "very hot ''(89) and decay very quickly. In 
the case of two event horizons the solution is unstable because of jgair 
creation. If  the Newtonian mass is sufficiently big, this solution could be 
more stable because the Hawking effect is not important for very massive 
black holes .  (89) The situation without any event horizons is very interesting 
from the physical point of view, because it corresponds to the parameter q 
for electrons (in general, for any elementary particle). Thus, we have in this 
case a singularity without a horizon. The structure of this singularity is 
different from the Reissner-NSrdstrSm singularity in general relativity and 

1.0 

0,8 

0.6 

OC - 1 0 . l .  

0.2 

0.0 

- 0 . 2  

) I ] J 
2 /-, 6 8 10 " 

R 

Fig. 7. The function a ~ =f(q, R) versus R for various values of parameters q. Here q0 denotes 
the critical value for which we have only one event horizon for the value R=RH. For the value 
R = RH the function f(q, R) has a minimum regardless of the value of q. If q > qo, we have two 
event horizons [two real roots o f f (q ,  R) Rm, R1f2]. If q<qo, there are no event horizons 
[no real roots for f(q, R)]. 
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the Reissner-N6rdstr6m-like or Schwarzschildlike singularity in the non- 
symmetric theory of gravitation [see Refs. 81 and 63 and equation (20.23)]. 

To summarize, we have found the following exact solution (in the form 
suggested in Section 6 of Ref. 18): E;0 0 ,!r 7 

- r  z 0 (20.61) 
gu~ = 0 - r  2 sin 2 0 

-12/r 2 0 0 T _I 

I + Q  r -i 

T= -~-g /bJ)  (20.63) 

b 4 = 4/4 (20.64) 

E=-Q---( fl ~ (20.65) 
r 2 \ r 4 + 4 / 4 J  

The function g is plotted on Figure 2 [see equation (20.13)]. The solution 
has one horizon if 

tc 2 
Q = Q0 = 2.53 ~ (20.66) 

If Q < Q0, there are no horizons. If Q > Q0, we have two horizons (as for 
the Reissner-N6rdstr6m solution to the Einstein-Maxwell equations). In 
other words, the horizons exist if the mass is sufficiently big [see equation 
(20.59)]. Finally, let us calculate the ratio Q/mN for our solution. We get, 
using equation (20.34), 

Q _4 .~  
mN rcq 

(20.67) 

Finally, let us check the generalized Bianchi identity for our solution. 
We have 

(gV~Tvr + g~VTr~).,, + x / ~  g e 6  T~6 = 0 (20.68) 
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In our case (spherical symmetry and static) one derives from equation 
(20.68) the simpler expression 

d (gllTll)_�89 d 
drr - - drr T('~t~) = 0 (20.69) 

and only the symmetric part of the energy-momentum tensor enters. 
Substituting T(uv) from equation (20.4), one easily gets the desired identity. 
Equation (20.68) can be derived from the Bianchi identity for R~,(F) or 
/?~p(if') in our theory using the field equations and it expresses the energy- 
momentum conservation laws. Thus, our solution satisfies the energy- 
momentum conservation laws. 

21. TEST PARTICLE MOTION IN THE EXACT SOLUTION 
IN NKKT 

In this section we consider equations of motion for test particles in 
space-time described by our solution. 

Let us calculate the connection F~r and the Christoffel symbols for our 
solution. We get (using results from Ref. 82) 

212 
F[141 tzr3 

F23 = -  �89 sin 20 

F33 = F332 = ctg 0 

1 /, 
= = - 

F 0 2  ) -  
r (21.1) 

l 2 -2  __ -3  
F[241 - F[341 = a r  3 

- Off 
r l j  - 

2a 

14) t / '  ~J  4/4 Y ' - -  712 1 +  
144=r-~a24 2a 8a2r 5 ~ 2a 3 

-4 2 1 4 + ) " = 3 1 " [  1 14~ -'  a' 
r"4~=r~aa 2y 2r 4~, + 7 )  2a 
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The remaining F's are zero. Let us consider the symmetric part of our 
solution, i.e., [a0 0 

0 - r  2 0 (21.2) 
g("~)= 0 0 - - r  2 sin 20 

0 0 0 7 

where a and 7 are given by formulas (20.62) and (20.63). One easily finds 
the determinant 

l 4 fg = det[g(uv)] =-(1 4-~) r4 sin2 0 (21.3) 

The determinant is not singular at r=0.  The inverse tensor for gwv) 

~("~)g(~) = 5~ (21.4) 

is the following: 

0 0 !1 ~(.v) = 0 - 1 / r  2 0 

0 0 - 1 / ( r  2 sin 2 0) 

0 0 0 y 

(21.5) 

Let us calculate the Christoffel symbols for g(.v); 

/3 J -  2 ~; u;(~u),r g(r.),~- g~r).~) (21.6) 

We easily find 

{ 1l___~ sin20 
33j a 

{2}  = - � 8 9  
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3}=ctg 0 
32 

{} 1 ~" _ - l  4 +--  

44 2a 2a2r 5 

2y 2a r 4 \ + r  g) (21.7) 

The remaining Christoffel symbols are zero. Let us write the equation of 
motion for an uncharged test particle for our solution, i.e., the equation for 
geodesics, 

d2x a _ dx ~ dx r 
dr 2 ~-F~(a~)d~- d r - 0  (21.8) 

We easily find from (21.1) 

,,~, o, (~r?+ F 7," _( ,  ,"~ o' ~(,,,I ~ 
dr--5+2a\dr/ Lsa2,., \ +,7}~-~a~J\dr/ 

a L\d-~r/ + sin2 0 = 0 

d20+2  dr dO sin20 (ddp) z 
d'g 2 r dr dr 2 \dT /  =0 (21.9) 

d2~b ~ 2 d," d~b ~- 2 ctg 0 d_~ dO= 0 
dfl r dr dr dr dr 

d2t F 314 a' ] dr dt 

~ ' - [ - "  ~-- 4 J dr L2,.(l +,.) G dr dr 
0 

In the nonsymmetric theory of gravitation uncharged particles move along 
geodesics in Riemannian geometry formed from gwv),04) i.e., in Christoffel 
symbols, 

=o (21.1o) 
dr 2 dr dr 
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One easily finds from (21.7) 

+,_ F(~~ o (<,+7']=o 
a L\dr/ \dr/_1 

,,,~o sin 20/<,,+~ ~ : ao ~,. 
dr 2 7 //\-~r) 4 r dr dr=O (21.11) 

d2~b42 d 4 dr t.2ctgo de~ dO=o 
dr 2 r dr dr dr dr 

a ~, r~, ! 4 ] a t a o  o 
drT+LG ~ r ( /4+r4) jdr  d--z = 

Let us find the equations of motion for a charged test particle. In the non- 
symmetric Ka]uza-Klein theory (NKKT)  (see Section 9) 

d2x'~ - dx~dxr ( ) 4 -  q dX~=o (21.12) 
dr ~ ~- F~Pr) dr dr ~ [g~rFrn- gt"rJHra] dr  

where q is the charge and mo the rest mass of a test particle. Using 
(20.9) and (20.7), one gets 

d~,. a'(d,-/2 [-7,' f P~a'q(dt/2 

' r(~~ (~+7] I_\d-r/ +sin2 0 
a \ d r / J  

q Q r4+l  4 dt 
= 0  (21.13) 

mo ar 2 r4+414 dr 

d20-42 dr dO sin 20d~b_0  

dr 2 r dr  dr  2 dr  

d2t t 314 at#" dt + q rZaQ dr=o 
dr 2 2r(/4 + r 4) dr  dr  m0 r 4 + 4l 4 dr  

In Ref. 25 and in Section 12 a different possibility is considered for the 
equations of  motion for a charged test particle, 

d2xa { }a dx ndx '~ _ _ =  + ~-q---[g"rFrp-g['~rlH• dxp 0 (21.14) 
dr z fl~" dr dr mo dr 
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Using (21.9) and (21.11), one finds the equations 

o 
2+--1--1--/~--~-~+ 1+~-~ ~a  3 \ d r /  a L \ d r ]  \ d r ] l  dr 2a \dr] L2a2r + sin2 0 

q Q r4+l 4 dt 

mo ar 2 r4+8/4 dr 
=0 

d20 sin 20 (drip)2+2 dO dr=o 
dr 2 2 \ d r /  r dr dr 

d2~b4 2 d O dr t_2ctgod_~ dC~=O (21.15) 
dr z r dr dr dr dr 

a' l 4 ] dt dr r2aQ dr d2t + - - 4  =0 
dr 2 ~ "r q r( l~+ r4) J -&r dr mo r4+8/ '  dr 

Notice that the equations for 0 and q~ are the same in (21.9), (21.11), (21.13), 
and (21.15) regardless of the connections and whether the particle is charged 
or not. For a'  we have 

(Q2,.2 
a ' =  a_+r a2 ~,r4-'~ 4 (21.16) 

where a is given by (20.13). According to the general properties of the 
geodetic equations in Einstein's unified field theory, the nonsymmetric theory 
of gravitation, and the nonsymmetric Kaluza-Klein theory, equations 
(20.9), (21.11), (21.3), and (21.15) have the following first integral of motion 
(see Ref. 25 and Section 9): 

7(dt)Z-a(dr]2-r2[(dO]2+sin20(dd?]2q=const  (21.17) 
\dr /  \dr /  Lkdr/ \ d r / I  

We can choose const = 1, i.e., we consider timelike world-lines and 

7 \dr /  \dr /  [_\dr/ +sin2 0 \ d r / J  ! (21.18) 

Let us consider equations for 0 and ~b: 

d20 sin 20[d6\  2 2dO dr 
dr 2 2 /--']\dr] + - 0  r dr dr 

(21.19) 
d2~b~-2ctgod~-dO 2 ddp dr - - 4  . . . . .  0 
dr 2 dr dr r dr dr 
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We easily find the first integral of motion of (21.10), 

r2 ~(dOt2+sin2 0 (dq~12]: 2Eo 
k\dr] \ d r / j  r z 

where 

(21.20) 

E0 = const 

Comparing (21.18) and (21.20), we get 

d/'/2 (dr/2= 1 _ _ _  
dr/ - a \dr/  

(21.21) 

2E0 
r2 (21.22) 

Let us consider the second equation of (21.19). We easily find the following 
first integral of motion : 

L 
(21.23) 

dr r 2 sin 2 0 

where L =  const. Comparing (21.20) and (21.23), we get 

2 1 

The first integrals (21.20) and (21.22) lead to the following simplifications 
of equations (21.9), (21.11), (21.13), and (21.15) : 

d2r 
dr 2 

d2r 
dr 2 

a' j ( l_2Eo~ 2Eo=o (21.9a) 714 (dl'~2--[- 7/4 ~-~2 ~ r 2 ] 
8r(/4 + r 4) \dr] L8ra (1 a + r 4) ar 3 

d2t F 3] 4 a'qdr dt=o 
-7-5 + 72-? 4 dr L2r(I +r ) 2 a J d r d r  

2r(14+r4)\dr ] 2ra(~+r4  ) +~a 2 1 r2 ] ar 3 

[a' ,4 ]atar=o d2t + r(l 4 + r 4) ~ dr dr 2 2a + 

d2r 7l 4 (drl2+[ 7l 4 a ' ] ( 2 E o )  2E0 
-~-~-t- 8r(ln+r4 ) \dr/  L8ar(14+r 4) 2aa 1-~.2 j ctr 3 

q Q r4+/4 dt 
- 0  

mo ctr 2 r4+4/4 dr 
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d2r 
dr 2 

d2t [ 3l 4 a"~ dr dt q r2aQ dr 
+ /  ,q--?. 4 ) - - - - - t  - 0  

dr  2 \2r(l + r )  2a dr dz mot4+414dr 

/ 4 
(dr]  2 + ~-~7a2 1 --~--) + ar~ 

2,(#4 +,.4) \d r /  2ra(?+ r 4) 

(21.13a) 

q Q r4+/4 dt 
=0  

mo ar 2 r4+414 dr 

d2t ra '  l 4 ] dt dr r2aQ dr 
- -  ---~ - 0  (21.15a) 

dr2 + L2da -t r ( l ~ r  a)j q dr dr m0 r4+414 dr 

For angular coordinates we have for equations (20.9a), (21.1 l a), (21.13), 
and (21.15a) the same equations (21.19) and the same first integrals of 
motion (21.20), (21.22), and (21.23). In this section we consider timelike 
world-lines of a charged test particle (too # 0). Moreover, taking m0 =q  = 0 
and cons t=0  in equation (21.17), one gets extremal and nonextremal null 
trajectories on E. 

It would be interesting to examine the geodetic completeness of our 
solution for Einstein and Riemann connections. This will be done elsewhere. 

22. S U M M A R Y  OF T H E  P R O P E R T I E S  OF T H E  S O L U T I O N  
A N D  P R O S P E C T S  

We have found an exact static, spherically symmetric solution for the 
nonsymmetric Kaluza-Klein theory (NKKT).  ~ Our solution has the 
following properties: The metric (symmetric part of g~/~) behaves asymptoti- 
cally like the Reissner-N6rdstr6m solution of general relativity (apart from 
a factor of 1 + 14/r4), which is typical of the nonsymmetric gravitational 
theoryJ 63'81) The most remarkable feature of this metric is that the function 
a is not singular at r= 0 and goes to 1 as r ~ 0. We have calculated the 
total energy of the solution, which is its Newtonian mass. This quantity 
is constructed from q and l, the charge and fermion number parameters, 
respectively. The electric field of our solution behaves asymptotically like 
the Coulomb field generated by a charge Q. Moreover, this field vanishes at 
r = 0  ~nd is nonsingular for all r. We get a maximal value of this field similar 
~,0 that in Born-Infeld electrodynamics, t87'9~ We calculated the charge distri- 
bution for such a field and showed that it is nonsingular and equal to 
zero at r = 0. Asymptotically our solution behaves similar to the Reissner- 
N6rdstr6m-like solution in NGT. (8~ Although asymptotically we see a New- 
tonian mass and an electric charge, at the origin (r = 0) there is no mass or 
electric charge (only fermion charge 1). Thus, it seems that we get "mass" 
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without mass and "charge" without charge. The total charge for our solution 
is the same as the Coulomb charge (charge seen at infinity). The total mass 
is the same as the Newtonian mass (mass seen at infinity). 

In this sense it could be treated as a kind of geon. {9~) The Newtonian 
mass is the self-interaction energy of  all fields. This is in the spirit of  the 
Mach principle. The equality of the total and the Newtonian mass seems to 
be connected to the topological properties of the space-time. 

For  example, if we consider this solution as a model of  the electron, we 
get a connection between the classical radius of  the electron and its fermion 
number parameter 1. Note that in general relativity the total energy associ- 
ated with the electric field of  a pointlike electron is infinite. 

Our solution possesses a singularity at r = 0  in the determinant of  the 
full nonsymmetric metric. However, the (symmetric) metric seems to be less 
singular. There is no singularity for the function a and the determinant of  
the symmetric part is not zero. The function 7/has a singularity only in the 
factor 1 + 14/r  4 and the function co = 12/r  2 has the usual singularity at r = 0. 
The electric field is not singular. Our solution possesses one or two event 
horizons if the charge Q (and consequently the Newtonian mass) is 
sufficiently large. The solution seems to represent a bounded system of  gravi- 
tational and electromagnetic fields. The radial energy density is zero at the 
origin, and finite everywhere. The metric is spatially flat at the origin. For  
a very small value of  the parameter q (see Figure 7) the function a -~ 1, and 
y = l + 14/r  4. If  the parameter q is equal to qelect . . . .  one gets 

1 > a - 1  = 1 2 2 __ 10-74~ _ - q e j e c t r o n P ( R ) > l -  - qdectron " Pmax> 1__ -- 1 (22.1) 

Thus, a is almost exactly one and 1" is almost exactly 1 + I4/i "4. The metric 
is then as follows: 

0 -1"2 0 
g,v = 0 - r  5 sin 2 0 

- I 2 / r  2 0 0 1 + 14/1.4 

(22.2) 

The symmetric part of  this metric is spatially flat. It is easy to see that such 
behavior is valid for every elementary particle. The remarkable property of  
(22.2) is that it is described completely by the parameter 1 (fermion number), 
which plays the role of  the second gravitational charge in the nonsymmetric 
theory of  gravitation. It seems that the fermion number parameter should 
play a significant role in the unification of  elementary particle theory and 
gravity. In equation (20.2) the fermion number parameter is much more 
important than the mass. Thus, the geometry of  space-time on the level of 
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elementary particles is determined by the second gravitational charge. The 
function a -1 in general relativity has the following form: 

-1 2m 
a = 1 - - -  (22.3) 

r 

This function describes the difference between the Schwarzschild solu- 
tion and a Minkowski metric; in particular, the curvature of the  space. In 
the solar system at the earth's orbit one finds 

a-l(1 a u ) ~ 1 - 3  • 10 -8 (22.4) 

where 1 a u =  1.45 • 108 km is one astronomical unit (the radius of the earth's 
orbit) and we have put into equation (22.3) 

2 m -  5 km (22.5) 

which is the Schwarzschild radius of the sun. If we compare equation (22.4) 
with (22.1), we easily see that our solution with q = qcl~ctro, is spatially much 
flatter everywhere than three-space at the orbit of the earth. 

Note that in equation (22.2) we get in a natural way the constant 1, 
which has the dimension of length. Some authors claim that it is impossible 
to get a true unification of  the gravitational field and elementary particles 
without a new universal constant of the dimension of length. In the nonsym- 
metric theory of gravitation there exists such a constant connected to the 
fermion number. The nonsymmetric Kaluza-Klein theory, which unifies the 
nonsymmetric theory of gravitation with a gauge field theory (i.e., the elec- 
tromagnetic field), possesses this constant as well. This fact might enable 
this investigation to lead ultimately to a true unification of gravity and 
elementary particles. 

Here are some prospects for further investigations: 

1. Find nonstatic solutions if they exist. 
2. Find axially symmetric stationary solutions of the field equations. 

This is more difficult, because there is no known axially symmetric 
stationary solution in the Einstein unified field theory and in NGT. 

3. Extend our formalism to the non-Abelian, nonsymmetric Kaluza- 
Klein theory, ~23'24) i.e., find such a solution for the case G = SU(2) 
and G=SU(2)• U(I). This will offer a model of an electron or a 
lepton constructed from gravitational, electromagnetic, and weak 
interactions. 

4. Extend our solution for the nonsymmetric Jordan-Thiry theory, t~9) 

Recently R. B. Mann t3~) found eight classes of spherically symmetric 
and static solutions in NKKT.  These solutions are more general and some 
of them have no singularities in gravitational and electromagnetic fields. Our 
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solution is a special case of his solutions. Some of these solutions possess 
nonzero magnetic field (Bo ~0)  and nonzero gt231 = f ~ 0 .  The nonsingular 
solutions are parametrized by fermion charge 12, electric charge Q, and a 
new constant Uo. This constant is related to g[23] a s  l 2 is to gD4]- It plays a 
similar role for gt,vJ as the magnetic charge for F ~ .  In some solutions the 
skewon singularity 12/r 2 is replaced by an expression of the form 12/0 .4 +f2).  

Much work needs to be done to find the physical significance of these 
solutions. It is important to determine whether they are classically stable 
(for example, in the Poincar6 sense). If  they are, it would have very important 
consequences for the possible existence of quantum particles based on 
solitonlike solutions. Probably the nonsingular aspects of the solutions are 
a manifestation of the topological properties of NKKT. This is supported 
by the topological character of the current Ju. 

Finally, let us notice that our solution has many similarities with 
Demianski's ~9~ solution of  coupled Born-Infeld and Einstein equations. This 
solution is nonsingular for a special choice of the integration constant 
(c = 0) as in our case. Moreover, it depends on the Born-Infeld constant and 
cannot be considered as a model of an electron. The mass of the solution is 
the self-interaction energy of the gravitational and electric fields. It seems 
that N K K T  has many unexpected relations to nonlinear electrodynamics in 
curved space-time. This statement can also be supported by the form of the 
Born-Infeld Lagrangian. Originally ~87) it was supposed that 

1 {[_det(bg. ~)]'/2 _ [-det(bg~ ~ + F~ ,.)]'/2} 5~ =4--~ (22.6) 

where g~,~=g~, is a symmetric metric tensor and F,v is the strength of the 
electromagnetic field, b = const. The form of  the Lagrangian reveals its con- 
nection to the nonsymmetric field theory because of the nonsymmetric tensor 

P.  v = bg. v + Fuv (22.7) 

However, in NGT and N K K T  the skew-symmetric part of the metric has a 
different, i.e., gravitational interpretation. 

APPENDIX 

Using equations (2.9) and (2.11) from Ref. 82 and the equation 

0) 2 l 4 

t~ ~/ __ 0) 2 f12 +. f 2 
(A.1) 
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one gets 
0~' 2 

A,,([') = -  �89 +4C2] +~a q~' + ~-5~2 [3(q~) 2+4D2] 

+( co- 4,,+ ~ ' -  
\2a7, zT,/ 2a7, 

__~ (o,= +,,,)+_o r ,, t 
Or \2a7, 27,1 at \-~ ~ i  

2rite7, 2azz4~-2-a+2 ~J (A.2) 

1 ~ �9 0,) 2 
A,~4(r) =�89 - ~ [(q~): + D2] + r  z [3(~b ): +4C:1 

( '") 
+ ~a7 ~' 2a)\27, 2a7, • -~a 

O f  to 2 . a ~ [ a' co2 , 7" 

c~ {co: �9 r '  +~;~+~) (A.3) 

A::(I')={(-2fC4--~fd2:)'+2fC-fl~' O- log[ro:(fl: +f:)] 
8a  ar 

4a -c35\ ~ ] 

o } 2fD-fl~ 0 log[co2(/32+f2) 1_4__~ (fc~+ 2flD) 
87" 8t 

I A . ( ~ )  
sin 2 0 (A.4) 

4a 47' ~d?' 

Ot 47' 4a 
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where 

+ ~ 2fix2 ~ +2--d7 *'7 
DC f12 + f2  (A.5) 
2l 2 a 

A123](~,)=sinO[(fdp'-2flC 1' C ~a } - 4a ( 2 f C -  fl ~b ') 

+ - - ( f e ~ ' +  2flC) 
8a \ a  au y l 

+ - -  ( ffP + 2 fl D 7 + ~a y dP + -~a 

O ( f ~ + 2 f l D l + D  - r i d ) ]  (A.6) ~tt Urr ) ;(2fD 

~b = log(fl 2 + f z )  

c _ f f l ' - f l f '  
p~+f~ 

~f-pf D - - -  
3~+f~ 

An overdot means a derivative with respect to time t, and a prime means a 
derivative with respect to radius r. We also have 

A[,4](~,) = ~ [(r + 4C2]- ~ [(~,)2 + 4D 2] 

+--,~ +&) 
4a -2 c3t\ 7J 

R E F E R E N C E S  

!. Kaluza, T., Zum Unit/itsproblem der Physik, Sitzgsberichte der Preussiche Akademie der 
Wissenschaften, 192, 966. 



738 Kalinowski 

2. Klein, 0., Zeitschriftfar Physik, 37, 895 (1926) ; Klein, O., On the theory of charged fields, 
in New Theories in Physics (Conference Organized in Collaboration with International 
Union of Physics and the Polish Co-operation Committee, Warsaw, May 30th-June 3rd, 
1938), Paris (1939), p. 77. 

3. Einstein, A., The Meaning of Relativity, 5th ed., rev., Methuen, London (1951), Appendix 
II, p. 127; Jakubowicz, A., and Klekowska, J., Tensor N.S�9 20, 72 (1969); Chung, K. T., 
and Lee, Y. J., International Journal of Theoretical Physics, 27, 1083 (1988); Chung, 
K. T., and Hwang, H. J., International Journal of  Theoretical Physics, 27, 1105 (1988); 
Shavokhina, N. S., Nonsymmetric metric in nonlinear field theory, preprint of the JINR, 
P2-86-685, Dubna (1986)�9 

4. Kaufman, B., Helvetica Physica Acta Suppl. 1956, 227; Chung, K. T., Acta Mathematica 
Hungarica, 41(1-2), 47 (1983). 

5. Einstein, A., and Kaufman, B., Annals of Mathematics, 59, 230 (1954); Kaufman, B., 
Annals of Mathematics, 46, 578 (1945). 

6. Einstein, A., Annals of Mathematics, 46, 578 (1945); Einstein, A., and Strauss, E. G., 
Annals of Mathematics, 47, 731 (1946). 

7. Kerner, R., Annales de I'Institut Henri Poincar~, IX, 143 (1968). 
8. Cho, Y. M., Journal of Mathematical Physics, 16, 2029 (1975); Cho, Y. M., and Freund, 

P. G. O., Physical Review D, 12, 1711 (1975). 
9. Kopczyski, W., A fibre bundle description of coupled gravitational and gauge fields, in 

Differential Geometrical Methods in Mathematical Physics, Springer-Verlag, Berlin (1980), 
p. 462. 

10. Kalinowski, M. W., International Journal of Theoretical Physics, 22, 385 (1983). 
11. Thirring, W., Acta Physica Austriaca Suppl. IX 1972, 256. 
12. Kalinowski, M. W., Acta Physica Austriaca, 53, 229 (1981). 
13. Kalinowski, M. W., International Journal of Theoretical Physics, 23, 131 (1984)�9 
14. Kalinowski, M. W., Acta Physica Austriaca, 55, 197 (!983). 
15. Kalinowski, M. W., Journal of Physics A (Mqthemati~al and General) 15 2441 (1982). 
16. Kahnowskl M- w., Interhational Journal of Theoretical Physics, 20, 563 (1981). 
17. Ems~[em, A. Annalen de," physik, 17, 89l (1905). 
18. Kalinbwski, M. W., Journal of Mathematical Physics, 24, 1835 (1983). 
19. K~linowski, M. W., Canadian Journal of Physics, 61, 844 (1983)�9 
20. Jordan, P., Schwerkraft und Weltal, Vieweg, Braunschweig (1955). 
21. Thirry, Y., Etude mat~matique de equations d'une theorie unitare h quinze variables de 

champ, Gautiers-Villars (1951). 
22. Lichnerowicz, A., Theorie relativistes de la gravitation et de l'electromagnetisme, Masson, 

Paris (1955). 
23. Kalinowski M. W., Journal of Physics A (Mathematical and General), 16, 1669 (1983). 
24. Kalinowski M. W., Nuovo Cimento, LXXXA, 47 (1984). 
25. Kalinowski M. W., Journal of Mathematical Physics, 25, 1045 (1984). 
26. Kalinowski M. W., Annals of Physics, 148, 241 (1983). 
27. Kalinowski M. W., Fortschritte der Physik, 34, 361 (1986). 
28. Kalinowski M. W., and Mann, R. B., Classical and Quantum Gravity, 1, 157 (1984). 
29. Kalinowski M. W., and Mann, R. B., Nuovo Cimento, 91B, 67 (1986). 
30. Kalinowski M. W., and Kunstatter, G., Journal of Mathematical Physics, 25, 117 (1984). 
31. Mann, R. B., Journal of Mathematical Physics, 26, 2308 (1985). 
32. Kalinowski, M. W., International Journal of Theoretical Physics, 26, 21 (1987). 
33. Kalinowski, M. W., International Journal of Theoretical Physics, 26, 565 (1987). 
34. Moffat, J. W., Generalized theory of gravitation and its physical consequences, in Proceed- 

ings of the VII International School of Gravitation and Cosmology. Erice, V. de Sabbata, 
ed., World Scientific, Singapore (1982), p. 127. 



Nonsymmetric Kaluza-Kleln Theory in EM Case 739 

35. Kunstatter, G., Moffat, J. W., and Malzan, J., Journal of Mathematical Physics, 24, 886 
(1983). 

36. Hilbert, D., G6ttingen Nachrichten, 12 (1916). 
37. Levi-Civita, T., Atti R Accademia Nazionale dei Lincei Classe de Scienze Fisichi, Matemat- 

iche e Naturali. Memorie, 26, 31l (1917); Thiry, Y., Journal de Mathematiques Pure et 
Appliquees, 30, 275 (1951). 

38. Lichnerowicz, A., Sur certains problems globaux relatifs au systeme des equations d'Einstein, 
Hermann, Paris (1939). 

39. Einstein, A., and Pauli, W., Annals of  Mathematics, 44, 131 (1943); Einstein, A., Revista 
Universidad Nacional Tucum~n, 2, 11 (1941). 

40. Werder, R., Physical Review D, 25, 2515 (1982); Bartnik, R., and McKinnon, J., Physical 
Review Letters, 61, 141 (1988). 

41. Kunstatter, G., Journal of Mathematical Physics, 25, 2691 (1984). 
42. Roseveare, N~ T., Mercu13,'s Perihilion: From Le Vertier to Einstein, Clarendon Press, 

Oxford (1982). 
43. Hlavaty, V., Geometry of Einstein's Unified Field Theory, Nordhoff-Verlag, Groningen 

(1957); Tonnelat, M. A., Einstein's Unified Field Theory, Gordon and Breach, New York 
(1966). 

44. Hill, H. A., Bos, R. J., and Goode, P. R., Physical Review Letters, 33, 709 (1983); Hill, 
H. A.o International Journal of Theoretical Physics, 23, 689 (1984); Gough, D. O., Nature, 
298, 334 (1982). 

45. Moffat, J. W., Physical Review Letters, 50, 709 (1983) ; Campbell, L., Moffat, J. B., Astro- 
physical Journal, 275, L77 (1983). 

46. Moffat, J. W., The orbit of Icarus as a test of a theory of gravitation, University of Toronto 
preprint (1982); Campbell, L., McDow, J. C., Moffat, J. W., and Vincent, D., Nature, 305, 
508 (1983). 

47. Moffat, L W., Foundation of Physics, 14, 1217 (1984); Moffat, J. W., Test of a theory of 
gravitation using the data from the binary pulsar 1913 + 16, University of Toronto Report 
(1981); Kisher, T. P., Physical Review D, 32, 329 (1985); Will, M. C., Physical Review 
Letters, 62, 369 (1989). 

48. MoffaL J. W., Experimental consequences of the nonsymmetric gravitation theory including 
the apsidal motion of binaries, Lecture given at the Conference on General Relativity and 
Relativistic Astrophysics, University of Dalhousie, Halifax, Nova Scotia (1985). 

49. McDow, J. C., Testing the nonsymmetric theory of gravitation, Ph.D. thesis, University of 
Toronto (1983); Hoffman, J. A., Masshal, H. L., and Lewin, W. G. H., Nature, 271, 630 
(1978). 

50. Bergmann, P. G., International Journal of Theoretical Physics, 1, 52 (1968). 
51. Trautman, A., Reports of Mathematical Physics, 1, 29 (1970). 
52. Utiyama, R., Physical Review, 101, 1597 (1956). 
53~ Stacey, F. D., Tuck, G. J., Moore, G. J., Holding, S. C., Goldwin, B. D., and Zhou, R., 

Reviews of Modern Physics, 59, 157 (1987); Ander, M. E., Goldman, T., Hughs, R. J., and 
Nieto, M. M., Physical Review Letters, 60, 1225 (1988); Eckhardt, D. H., Jekeli, C., 
Lazarewicz, A. R., Romaides, A. J., and Sands, R. W., Physical Review Letters, 60, 2567 
(1988); Moore, G. I., Stacey, F. D., Tuck, G. J., Goodwin, B. D., Linthorne, N. P., Barton, 
M. A., Reid, D. M., and Agnew, G. D., PhysicalReview D, 38, 1023 (1988). 

54. Fischbach, E., Sudarsky, D., Szafer, A., Tolmadge, C., and Arnson, S. H., Physical Review 
Letters, 56, 3 0985). 

55. Thieberg, P., Physical Review Letters, 58, 1066 (1987). 
56. Wesson, P. S., Physics Today, 33, 32 (1980). 
57. Gillies, G. T., and Ritter, R. C., Experiments on variation of the gravitational constant 

using precision rotations, in Precision Measurements and Fundamental Constants II, B. N. 



740 Kalinowski 

Taylor, and W. D. Phillips, eds., National Bureau of Standards (U.S.) Special Publication 
617 (1984), p. 629. 

58. Rayski, J., Acta Physica Polonica, XXVilI, 89 (1965). 
59. Kobayashi, S., and Nomizu, K., Foundation of Differential Geometry, New York (1963); 

Kobayashi, S., Transformation Groups in Differential Geometry, Springer-Verlag, Berlin 
(1972). 

60. Lichnerowicz, A., Th~oriE globale des connexions et de group d'holonomie, Cremonese, 
Rome (1955). 

61. Hermann, R., Yang-Mills, Kaluza-Klein and the Einstein Program, Mathematical Science 
Press, Brookline, Massachusetts (1978); Coquereaux, R., and Jadczyk, A., Riemannian 
Geometry, Fibre Bundle, Kaluza-Klein Theory and All That . . . .  World Scientific, Singapore 
(1988). 

62. Zalewski, K., Lecture on Rotational Group, PWN, Warsaw (1987) [in Polish]; Barut, 
A. O., and Raczka, R., Theory of Group Representations and Applications, PWN, Warsaw 
(1980). 

63. Moffat, J. W., Physical Review D, 19, 3557 (1979). 
64. Moffat, J. W., Physical Review D, 23 2870 (1981). 
65. Moffat, J. W., Woolgar, E., The Apsidal Motion of the Binary Star in the Nonsymmetric 

Gravitational Theory, University of Toronto Report (1984); Moffat, J. W., The Orbital 
motion of DI Hercules As a Test of the Theory of Gravitation, University of Toronto 
Report (1984). 

66. De Groot, S. R., and Suttorp, R. G., Foundations of Electrodynamics, North-Holland, 
Amsterdam (1972). 

67. Plebafiski, J., Nonlinear Electrodynamics, Nordita, Copenhagen (1970). 
68. Kalinowski, M. W., Letters in Mathematical Physics, 5, 489 (1981); Kalinowski, M. W., 

Acta Physica Austriaca, 27, 45 (1958). 
69. Kalinowski, M. W., Zeitschriftfiir Physik C (Particles and Fields) 33, 76 (1986). 
70. Hlavaty, V., Journal of Rational Mechanics and Analysis, 1, 539 (1952); 2, 2, 223; 4, 247, 

654. 
71. Wyman, M., Canadian Journal of Mathematics, 1950, 427. 
72. Lanczos, C., The Variational Principles of Mechanics, University of Toronto Press, Toronto 

(1970). 
73. Klotz, A. H., Macrophysics and Geometry, Cambridge University Press, Cambridge (1983) ; 

Klotz, A. H., Acta Physica Polonica B, 19, 533 (1988). 
74. Kalinowski, M. W., Physical Review D, 26, 3419 (1982). 
75. Kuiper, G. P., The Sun, University of Chicago Press, Chicago Illinois (1953). 
76. Smith, F. G., Pulsars, Cambridge University Press, Cambridge, New York (1977). 
77. Arkuszewski, W., Kopczyfiski, W., and Ponomaviev, V. N., Annales de l'Institut Henri 

Poincar~ A, 21, 89 (1974). 
78. Mann, R. B., Investigations of an alternative theory of gravitation, Ph.D. thesis, University 

of Toronto, Toronto (1982). 
79. Mann, R. B., and Moffat, J. W., Journal of Physics A, 14, 2367 (1981) ; Corrigenda, Journal 

of Physics A, 15, 1055 (1982). 
80. Moffat, J. W., Physical Review D, 19, 3562 (1978). 
81. Moffat, J. W., and Boal, D. H., Physical Review D, 11, 1375 (1975). 
82. Pant, N. D., Nuovo Cimento, 25B, 175 (1975). 
83. Papapetrou, A., Proceedings of the Royal Irish Academy, 52, 96 (1948). 
84. Bonnor, W. B., Proceedings of the Royal Society, 210, 427 (1951). 
85. Bonnor, W. G., Proceedings of the Royal Society, 209, 353 (1951). 
86. Vanstone, J. R., Canadian Journal of Mathematics, 14, 568 (1962). 



NonsymmeUic Kaluza-Klein Theory in EM Case 741 

87. Born, M., and Infeld, L., Proceedings of the Royal Society A, 144, 425 (1934). 
88. Abraham, M., Annalen der Physik, 10, 105 (1903); Cushing, J. T., American Journal of 

Physics, 49, 1133 (1981). 
89. Campbell, L., and Moffat, J. W., Black Holes in the Nonsymmetric Theory of Gravitation, 

University of Toronto Report, Toronto (1982). 
90. Demianski, M., Foundations of Physics, 16, 187 (1986). 
91. Wheeler, J. A., Physical Review, 97, 511 (1955). 


